Due to the poor seismic performance, strengthening of masonry structures is always a significant problem worthy to study. It has been proven that the bearing capacity of existing masonry buildings can be enhanced greatly with efficient strengthening measures. An experimental program was conducted to investigate seismic performance of un-reinforced masonry (URM) walls strengthened b,y reinforced mortar (RM) cross strips. Eleven walls were tested under horizontal low-cyclic load, simultaneously with a vertical constant load on the top face. Three URM walls were tested as reference. The other eight walls were externally strengthened with 40 and 60 mm thick of RM cross strips on one or both faces. Test results showed that externally strengthening with RM cross strips was an efficient way to enhance the seismic performance of URM walls. The failure modes were divided into shear failure and shear-compression failure. All the tested walls did not collapse until the test ended, while many diagonal cracks and few vertical cracks appeared on mortar strips. After strengthening, the shear capacity of the strengthened walls increased by at least 38.2%, and the reinforcement ratio was noted to be the key factor to influence the shear capacity with positive correlation. Besides, RM cross strips did improve deformation capacity greatly.
Motivation The interactions among various types of cells play critical roles in cell functions and the maintenance of the entire organism. While cell-cell interactions are traditionally revealed from experimental studies, recent developments in single cell technologies combined with data mining methods have enabled computational prediction of cell-cell interactions, which have broadened our understanding of how cells work together, and have important implications in therapeutic interventions targeting cell-cell interactions for cancers and other diseases. Despite the importance, to our knowledge, there is no database for systematic documentation of high-quality cell-cell interactions at cell type level, which hinders the development of computational approaches to identify cell-cell interactions. Results We develop a publicly accessible database, CITEdb (Cell-cell InTEraction database, https://citedb.cn/), which not only facilitates interactive exploration of cell-cell interactions in specific physiological contexts (e.g., a disease or an organ), but also provides a benchmark dataset to interpret and evaluate computationally derived cell-cell interactions from different tools. CITEdb contains 728 pairs of cell-cell interactions in human that are manually curated. Each interaction is equipped with structured annotations including the physiological context, the ligand-receptor pairs that mediate the interaction, etc. Our database provides a web interface to search, visualize, and download cell-cell interactions. Users can search for cell-cell interactions by selecting the physiological context of interest or specific cell types involved. CITEdb is the first attempt to catalogue cell-cell interactions at cell type level, which is beneficial to both experimental, computational, and clinical studies of cell-cell interactions. Availability and Implementation CITEdb is freely available at https://citedb.cn/ and the R package implementing benchmark is available at https://github.com/shanny01/benchmark. Supplementary information Supplementary data are available at Bioinformatics online.
In this paper, carbon fiber reinforced polymer (CFRP) and textile reinforced mortar (TRM) strengthening techniques were proposed to retrofit and strengthen fire-damaged prefabricated concrete hollow slabs. A total of six slabs, from an actual multi-story masonry building, were tested to investigate the flexural performance of reinforced concrete (RC) hollow slabs strengthened with TRM and CFRP. The investigated parameters included the strengthening method (CFRP versus TRM), the number of CFRP layers, and with or without fire exposure. One unstrengthened slab and one TRM strengthened slab served as the control specimens without fire exposure. The remaining four slabs were first exposed to ISO-834 standard fire for 1 h, and then three of them were strengthened with CFRP or TRM. Through the four-point bending tests at ambient temperature, the failure modes, load and deformation response were recorded and discussed. Both CFRP and TRM strengthening methods can significantly increase the cracking load and peak load of the fire-damaged hollow slabs, as well as the stiffness in the early stage. The prefabricated hollow slabs strengthened by CFRP have better performance in the ultimate bearing capacity, but the ductility reduced with the increase of CFRP layers. Meanwhile, the TRM strengthening technique is a suitable method for the performance improvement of fire-damaged hollow slabs, in terms of not only the load capacity, especially the cracking load, but also the flexural stiffness and deformation capacity.
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.