Let R be a commutative ring with non-zero unity and M be a unitary R-module. Let T(M) be the set of torsion elements of M. Atani and Habibi [6] introduced the total torsion element graph of M over R as an undirected graph T(Γ(M)) with vertex set as M and any two distinct vertices x and y are adjacent if and only if x + y ∈ T(M). The main objective of this paper is to study the domination properties of the graph T(Γ(M)). The domination number of T(Γ(M)) and its induced subgraphs T or(Γ(M)) and T of(Γ(M)) has been determined. Some domination parameters of T(Γ(M)) are also studied. In particular, the bondage number of T(Γ(M)) has been determined. Finally, it has been proved that T(Γ(M)) is excellent, domatically full and well covered under certain conditions.
Let R be a commutative ring with unity and M be an R-module with T Γ(M ) be its total graph. The subject of this article is the investigation of the properties of the corresponding line graph L(T Γ(M )).In particular, we determine the girth and clique number of L(T Γ(M )). In addition to that, we find a condition for L(T Γ(M )) to be Eulerian.
Let R be a commutative ring with unity and M be a unitary R module. Let Nil(M) be the set of all nilpotent elements of M. The entire nilpotent element graph of M over R is an undirected graph E(G(M)) with vertex set as M and any two distinct vertices x and y are adjacent if and only if x + y ∈ Nil(M). In this paper we attempt to study the domination in the graph E(G(M)) and investigate the domination number as well as bondage number of E(G(M)) and its induced subgraphs N(G(M)) and Non(G(M)). Some domination parameters of E(G(M)) are also studied. It has been showed that E(G(M)) is excellent, domatically full and well covered under certain conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.