We assayed gene expressions during adipogenesis of human MSCs. Microarray assays demonstrated time-dependent increases in expression of 67 genes, including 2 genes for transcription factors that were not previously shown to be expressed during adipogenesis.Introduction: Increased numbers of bone marrow adipocytes have been observed in patients with osteoporosis and aplastic anemia, but the pathological mechanisms remain unknown. Recently, microarray assays for mRNAs were used to follow adipogenic differentiation of the preadipocytic cell line, 3T3-L1, but adipogenic differentiation has not been examined in primary cells from bone marrow. Here we defined the sequence of gene expression during the adipogenesis ex vivo of human cells from bone marrow referred to as either mesenchymal stem cells or marrow stromal cells (MSCs). Materials and Methods: MSCs were plated at extremely low densities to generate single-cell derived colonies, and adipogenic differentiation of the colonies assayed by accumulation of fat vacuoles, time-lapse photomicroscopy, microarrays, and reverse transcriptase-polymerase chain reaction (RT-PCR) assays. Results and Conclusions: About 30% of the colonies differentiated to adipocytes in 14 days and about 60% in 21 days. Cell proliferation was inhibited by approximately 50% in adipogenic medium. The differentiation occurred primarily at the center of the colonies, and a few adipocytes that formed near the periphery migrated toward the centers. RT-PCR assays demonstrated that the differentiation was accompanied by increases in a series of genes previously shown to increase with adipogenic differentiation: peroxisome proliferator activated receptor ␥, CCAAT enhancer-binding protein ␣, acylCoA synthetase, lipoprotein lipase, and fatty acid binding protein 4. We also followed differentiation with microarray assays. Sixty-seven genes increased more than 10-fold at day 1 and 20-fold at day 7, 14, or 21. Many of the genes identified were previously shown to be expressed during adipocytic differentiation. However, others, such as zinc finger E-box binding protein and zinc finger protein 145, were not. This study should serve as a basis for future study to clarify the mechanisms of adipocyte differentiation of MSCs.
Purpose The transcription factor Forkhead box M1 (FOXM1) plays critical roles in cancer development and progression. However, the regulatory role and underlying mechanisms of FOXM1 in cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by FOXM1 and its impact on pancreatic cancer metabolism. Experimental Design The effect of altered expression of FOXM1 on expression of glycolytic enzymes and tumor development and progression was examined using animal models of pancreatic cancer. Also, the underlying mechanisms of altered pancreatic cancer glycolysis were analyzed using in vitro molecular biology. The clinical relevance of aberrant metabolism caused by dysregulated FOXM1 signaling was determined using pancreatic tumor and normal pancreatic tissue specimens. Results We found that FOXM1 did not markedly change the expression of most glycolytic enzymes except for phosphoglycerate kinase 1 and lactate dehydrogenase A (LDHA). FOXM1 and LDHA were overexpressed concomitantly in pancreatic tumors and cancer cell lines. Increased expression of FOXM1 upregulated the expression of LDHA at both the mRNA and protein level and elevated LDH activity, lactate production, and glucose utilization, whereas reduced expression of FOXM1 did the opposite. Further studies demonstrated that FOXM1 bound directly to the LDHA promoter region and regulated the expression of the LDHA gene at the transcriptional level. Also, elevated FOXM1-LDHA signaling increased the pancreatic cancer cell growth and metastasis. Conclusions Dysregulated expression and activation of FOXM1 play important roles in aerobic glycolysis and tumorigenesis in pancreatic cancer patients via transcriptional regulation of LDHA expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.