Heat shock factor 4 controls the transcription of small heat shock proteins (e.g., HSP25, alpha B-cyrstallin, and r-crystallin), that play important roles in modulating lens proteostasis. However, the molecular mechanism underlying HSF4-mediated transcription is still unclear. Using yeast two hybrid, we found that HSF4 interacts with the ATP-dependent DEXD/H-box RNA helicase UAP56, and their interaction in lens epithelial cell line was further confirmed by GST-pull down assay. UAP56 is a vital regulator of pre-mRNA splicing and mature mRNA nuclear export. The immunofluorescence assay showed that HSF4 and UBA56 colocalize with each other in the nucleus of lens epithelial cells. Ectopic UAP56 upregulated HSF4-controlled HSP25 and alpha Bcrystallin proteins expression, while knocking down UAP56 by shRNA reversed it. Moreover, UAP56 interacts with and facilitates the nuclear exportation of HSP25 and alpha B-crystallin mRNA without impacting their total mRNA expression level. In lens tissues, both UAP56 and HSF4 are expressed in the same nucleus of lens fiber cells, and their expression levels are simultaneously reduced with fiber cell maturation. Taken together, these data suggested that UAP56 is a novel regulator of HSF4 and might upregulate HSF4's downstream mRNA maturation and nuclear exportation.
Mutations in GJA8 are associated with hereditary autosomal dominant and recessive cataract formation. In this study, a novel insert mutation in GJA8 was identified in a Chinese congenital cataract family and cosegregated with the disease in this pedigree. This insert mutation introduces five additional amino acid residues YAVHY after histidine at the 95 site (p.H95_A96insYAVHY) within the second transmembrane (TM2) domain of Cx50 protein (Cx50-insert). Ectopic expression of Cx50-insert protein impairs the hemichannel functions and gap junction activity compared to wild-type Cx50 protein in human lens epithelial cells. Cx50-insert proteins were mislocated from cytoplasmic membrane to endoplasmic reticulum and lysosome. In mouse lens tissue, our results showed that Cx50 predominant expresses in epithelial cells and fiber cells at the transition zone of lens hinting its roles in lens differentiation. Taken together, these data suggest that the novel insert mutation in the TM2 domain of Cx50 protein, which impairs its trafficking to the cell membrane and gap-junction function, is associated with the cataract formation in this Chinese pedigree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.