Allyl radicals served as a crucial intermediate in the radical functionalization of fundamental raw materials and received increasing attention. Despite the significance, allyl-radicals-participated radical cross-couplings were rare and mainly focused...
1,3,5-tri-substituted benzene rings emerged with unique properties has widespread applications in materials, boosting the rapid development of their synthesis. Despite the significance, the direct construction of hetero-1,3,5trisubstituted benzene core was far less-developed. Herein, we realized a DBU-mediated isomerization/6-π electro-cycliza-tion/oxidative aromatization cascade of sulfonyl-substituted allenyl ketones under an air atmosphere (DBU = 1,8diazabicyclo[5.4.0]undec-7-ene). This versatile protocol featured metal-free conditions, easy operation, and broad functional group tolerance provides a new avenue for the construction of hetero-1,3,5-tri-substituted benzene.
Alkenes are ubiquitous, and radical difunctionalization of alkenes represents one of the most practical approaches to constructing value-added compounds. Dicarbonylation of alkenes provides direct access to value-added 1,4-dicarbonyl compounds. However, selectivity control for unsymmetric 1,2-dicarbonylation is an unclosed challenge. We herein describe NHCs and photocatalysis co-catalyzed three competent radical 1,2-dicarbonylation of alkenes by distinguishing two carbonyl groups, providing structurally diversified 1,4-diketones. Mechanistic studies indicated that NHCs-stabilized ketyl-type radicals originate from aroyl fluorides via oxidative quenching process of excited photocatalysis, and acyl radicals are generated from single-electron-oxidation of α-keto acids. Distinct properties of acyl radical and NHCs-stabilized ketyl radical contributed to selectivity control. Transient acyl radicals are rapidly added to alkenes delivering alkyl radicals, which undergo subsequent radical-radical cross-coupling with ketyl-type radicals, affording 1,2-dicarbonylation products. This transformation features mild reaction conditions, broad substruct scope, and excellent selectivity, providing a general and practical approach for the dicarbonylation of olefins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.