Capsular serotypes K1 and K2, the rmpA gene (a regulator of the mucoid phenotype) and aerobactin from Klebsiella pneumoniae have been identified as the major virulence factors for pyogenic liver abscesses with high morbidity, mortality and severe complications. The pathological mechanisms remain unclear. In this study, we compared liver immune responses and pathological changes in response to different serotypes of K. pneumoniae infections. A mouse model was used to investigate cytokine and chemokine production, histopathology findings, phagocytic uptake and mortality induced by serotypespneumoniae serotypes K1 and K2 showed lower 50% lethal dose values and more phagocytic resistance to neutrophils than K62 and the DK1 mutant. In sequential liver samples, viable bacteria counts increased 3 h to 3 days after low-dose inoculation (o10 1 colony-forming unit (cfu)) with K1 and K2, while K62 and DK1 cleared rapidly and became undetectable even with high-dose inoculation (B2.9 Â 10 5 cfu). Time-dependent increases in cytokines and chemokines, including tumor necrosis factor-a, interleukin (IL)-1b, IL-6, IL-10, keratinocyte-derived chemokines and macrophage inflammatory protein-2, were observed in the serum and liver tissue of K1-and K2-infected mice, and severe disease progression manifesting as microabscesses was also identified. K62 and DK1 inoculation did not result in similar immune responses and histological changes. These findings illustrate the critical role of phagocytic resistance against innate immunological defense mechanisms as well as its contribution to the development of liver abscesses.
Magnolol, an active component extracted from Magnolia officinalis, has various pharmacological effects, including potent antioxidant activity. In the present study, we investigated the effect of magnolol on apoptosis in rat vascular smooth muscle cells (VSMCs), using terminal-deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and flow cytometric analysis. Magnolol (5-20 micro M) concentration-dependently induced significant VSMC apoptosis, this effect being blocked by the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk, 50 micro M). To study the molecular mechanism, the mitochondrial death pathway was examined. Magnolol increased caspase-3 and caspase-9 activities significantly and reduced the mitochondrial potential (Deltapsi(m)). The levels of B-cell leukaemia/lymphoma-2 (Bcl-2), but not those of Bcl-2-associated X protein (Bax) or Bcl-x(L), were down-regulated concentration dependently by magnolol. In an animal model, balloon angioplasty-induced neointima formation was inhibited significantly by magnolol and Bcl-2 protein levels were reduced. Taken together, these results show that magnolol induces apoptosis in VSMCs via the mitochondrial death pathway. This effect is mediated through down-regulation of Bcl-2 protein levels, both in vivo and in vitro. Magnolol thus shows potential as a novel therapeutic agent for the treatment of atherosclerosis and re-stenosis.
The capsular polysaccharides in different serotypes of Klebsiella pneumoniae (KP) coded by the (CPS) gene cluster are characterized by a conserved and a hyper-variable region. We performed a virulence study by switching genes in the highly conserved region of the CPS cluster between strains. Six genes in the CPS conserved region in serotype K20, including galF, acidPPc, wzi, wza, wzb and wzc, were knocked out and replaced by the homologous genes from serotype K1. Compared to the parental K20 strain, the mutants showed a decline in lethality (LD 50 ) in mice from 10-fold to > 10 5 -fold and were categorized in terms of the effect on virulence as low (L) for galF and acidPPC, moderate (M) for wzi, and high (H) for wza, wzb and wzc. Although substituting the acidPPC gene from K1 for acidPPC in the K20 strain fully restored virulence, substitution with the wzi, wza, wzb or wzc homologs from K1 did not. The restoration with wzi from K1 led to a partial restoration of virulence, with the LD 50 in mice changing from 10 4 to 10 3 CFU . For the wza, wzb and wzc genes, Complementation of K20 wza, wzb and wzc from K1 resulted in varied degrees of lethality in mice. Variable improvement in serum killing and phagocytosis was observed when the knockout mutants were compared with the geneswitched strains. In conclusion, homologous genes for capsule synthesis failed to exhibit the same functionality when switched between serotypes and virulence was decreased in different degree in according to the genes' homology.
The purpose of this study was to investigate if PPARγ plays a role in the melanogenesis. B16/F10 cells were divided into five groups: control, melanin stimulating hormone (α-MSH), α-MSH+retinol, α-MSH+GW9662 (PPARγ antagonist), and GW9662. Cells in the control group were cultured in the Dulbecco's modified Eagle's medium (DMEM) for 48 hrs. To initiate the melanogenesis, cells in all α-MSH groups were cultured in medium containing α-MSH (10 nM) for 48 hrs. Cells were treated simultaneously with retinol (5 μM) in the α-MSH+retinol group. Instead of retinol, GW9662 (10 μM) was cocultured in the α-MSH+GW9662 group. Cells in the final group were cultured in the DMEM with GW9662. All the analyses were carried out 48 hours after treatments. The α-MSH was able to increase cell number, melanin production, and the activity of tyrosinase, the limiting enzyme in melanogenesis. These α-MSH-induced changes were prevented either by retinol or by GW9662. Further analyses of the activities of antioxidant enzymes including glutathione, catalase, and the superoxide dismutase (SOD) showed that α-MSH treatment raised the activity of SOD which was dependent on PPARγ level. According to our results, the α-MSH-induced melanogenesis was PPARγ dependent, which also modulated the expression of SOD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.