Intracranial hemorrhages in head CT scans serve as a first line tool to help specialists diagnose different types. However, their types have diverse shapes in the same type but similar confusing shape, size and location between types. To solve this problem, this paper proposes an all attention U-Net. It uses channel attentions in the U-Net encoder side to enhance class specific feature extraction, and space and channel attentions in the U-Net decoder side for more accurate shape extraction and type classification. The simulation results show up to a 31.8% improvement compared to baseline, ResNet50 + U-Net, and better performance than in cases with limited attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.