Ablation of persistent atrial fibrillation (persAF) targeting complex fractionated atrial electrograms (CFAEs) detected by automated algorithms has produced conflicting outcomes in previous electrophysiological studies. We hypothesize that the differences in these algorithms could lead to discordant CFAE classifications by the available mapping systems, giving rise to potential disparities in CFAE-guided ablation. This study reports the results of a head-to-head comparison of CFAE detection performed by NavX (St. Jude Medical) versus CARTO (Biosense Webster) on the same bipolar electrogram data (797 electrograms) from 18 persAF patients. We propose revised thresholds for both primary and complementary indices to minimize the differences in CFAE classification performed by either system. Using the default thresholds [NavX: CFE-Mean ≤ 120 ms; CARTO: ICL ≥ 7], NavX classified 70 % of the electrograms as CFAEs, while CARTO detected 36 % (Cohen’s kappa κ ≈ 0.3, P < 0.0001). Using revised thresholds found using receiver operating characteristic curves [NavX: CFE-Mean ≤ 84 ms, CFE-SD ≤ 47 ms; CARTO: ICL ≥ 4, ACI ≤ 82 ms, SCI ≤ 58 ms], NavX classified 45 %, while CARTO detected 42 % (κ ≈ 0.5, P < 0.0001). Our results show that CFAE target identification is dependent on the system and thresholds used by the electrophysiological study. The thresholds found in this work counterbalance the differences in automated CFAE classification performed by each system. This could facilitate comparisons of CFAE ablation outcomes guided by either NavX or CARTO in future works.Electronic supplementary materialThe online version of this article (doi:10.1007/s11517-016-1456-2) contains supplementary material, which is available to authorized users.
Left atrial ablation reduces global left atrial DF and decreases the degree of fractionation. Complex fractionated electrograms-mean and DF appear to share only modest spatial correlation and are affected to different extents by ablation, suggesting that they are either separate entities or reflect different components of the same substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.