Background Self-management intervention aims to facilitate an individual’s ability to make lifestyle changes. The effectiveness of this intervention in non-dialysis patients with chronic kidney disease (CKD) is limited. In this study, we applied a systematic review and meta-analysis to investigate whether self-management intervention improves renoprotection for non-dialysis chronic kidney disease. Methods We conducted a comprehensive search for randomized controlled trials addressing our objective. We searched for studies up to May 12, 2018. Two reviewers independently evaluated study quality and extracted characteristics and outcomes among patients with CKD within the intervention phase for each trial. Meta-regression and subgroup analyses were conducted to explore heterogeneity. Results We identified 19 studies with a total of 2540 CKD patients and a mean follow-up of 13.44 months. Compared with usual care, self-management intervention did not show a significant difference for risk of all-cause mortality (5 studies, 1662 participants; RR 1.13; 95% CI 0.68 to 1.86; I 2 = 0%), risk of dialysis (5 studies, 1565 participants; RR 1.35; 95% CI 0.84 to 2.19; I 2 = 0%), or change in eGFR (8 studies, 1315 participants; SMD -0.01; 95% CI -0.23 to 0.21; I 2 = 64%). Moreover, self-management interventions were associated with a lower 24 h urinary protein excretion (4 studies, 905 participants; MD − 0.12 g/24 h; 95% CI -0.21 to − 0.02; I 2 = 3%), a lower blood pressure level (SBP: 7 studies, 1201 participants; MD − 5.68 mmHg; 95%CI − 9.68 to − 1.67; I 2 = 60%; DBP: 7 studies, 1201 participants; MD − 2.64 mmHg, 95% CI -3.78 to − 1.50; I 2 = 0%), a lower C-reactive Protein (CRP) level (3 studies, 123 participants; SMD -2.8; 95% CI -2.90 to − 2.70; I 2 = 0%) and a longer distance on the 6-min walk (3 studies, 277 participants; SMD 0.70; 95% CI 0.45 to 0.94; I 2 = 0%) when compared with the control group. Conclusions We observed that self-management intervention was beneficial for urine protein decline, blood pressure level, exercise capacity and CRP level, compared with the standard treatment, during a follow-up of 13.44 months in patients with CKD non-dialysis. However, it did not provide additional benefits for renal outcomes and all-cause mortality. Electronic supplementary material The online version of this article (10.1186/s12882-019-1309-y) contains supplementary material, which is available to authorized users.
The volume of e-waste is growing around the world, and, increasingly, it is being disposed of by export from developed to developing countries. This is the situation in Ghana, and, in this paper we address the potential consequences of such e-waste disposal. Herein, we describe how e-waste is processed in Ghana, and what the fate is of e-waste-chemical contaminants during recycling and storage. Finally, to the extent it is known, we address the prospective adverse effects of e-waste-related contaminants on health and aquatic life downstream from a large e-waste disposal facility in Accra, Ghana.In developing countries, including Ghana, e-waste is routinely disassembled by unprotected workers that utilize rudimentary methods and tools. Once disassembled,e-waste components are often stored in large piles outdoors. These processing and storage methods expose workers and local residents to several heavy metals and organic chemicals that exist in e-waste components. The amount of e-waste dumped in Ghana is increasing annually by about 20,000 t. The local aquatic environment is at a potential high risk, because the piles of e-waste components stored outside are routinely drenched or flooded by rainfall, producing run-off from storage sites to local waterways. Both water and sediment samples show that e-waste-related contaminant shave entered Ghana's water ways.The extent of pollution produced in key water bodies of Ghana (Odaw River and the Korle Lagoon) underscores the need for aquatic risk assessments of the many contaminants released during e-waste processing. Notwithstanding the fact that pollutants from other sources reach the water bodies, it is clear that these water bodies are also heavily impacted by contaminants that are found in e-waste. Our concern is that such exposures have limited and will continue to limit the diversity of aquatic organisms.There have also been changes in the abundance and biomass of surviving species and changes in food chains. Therefore, the need for actions to be taken to reduce entry of e-waste pollutants into Ghana's aquatic environment is real and is immediate.Heavy metals (e.g., lead, cadmium, copper and zinc) and organic pollutants (e.g.,PCDD/Fs and PBDEs) have been detected in the sediments of local water bodies in quantities that greatly exceed background levels. This fact alone suggests that aquatic organisms that live in the affected water bodies are highly exposed to these toxic, bio-accumulative, and persistent contaminants. These contaminants have been confirmed to result from the primitive methods used to recycle and process e-waste within the local environment.Only limited local data exist on the threats posed by these e-waste-related contaminants on nearby natural resources, especially aquatic organisms. In this review,we have addressed the potential toxicity of selected heavy metals and organic pollutants on aquatic organisms. Since there are no data on concentrations of contaminants in the water column, we have based our predictions of effects on pollutant release ra...
This study investigated the vertical distributions of Microcystis cell density and colony size in Lake Taihu, where algal blooms occur frequently. Measurements were made from April 2011 to January 2012 to gain a seasonal outlook on the role of such distributions in the blooms. It was found that large colonies tended to accumulate on the water surface, but the cell density fluctuated widely. The cell density in the water column increased continuously from spring to summer (i.e., April to October) and decreased after late autumn, showing apparent seasonal variations. The abrupt occurrence and disappearance of Microcystis blooms over short periods of time was not caused by the rapid growth of Microcystis but by the rise and accumulation of large Microcystis colonies at the water surface, both of which are affected by colony size. The ascent velocity of large colonies was higher than that of small ones, which enables large colonies to more easily overcome the stirring effects of water flows, waves and perturbations to rise to the surface. The results of canonical correspondence analysis (CCA) of Microcystis vertical distribution in relation to environmental factors suggested that nutrient concentrations and temperature were the main influencing factors related to blooms formation by Microcystis in Lake Taihu during our investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.