Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (V )) affected the observed linear relationship between F and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F . Changes in canopy structure mainly control the GPP-F relationship, with a secondary effect of Cab and V . In order to exploit F data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered.
Abstract. This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations -relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (f APAR) -with those of classical MM.Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r 2 = 0.86, p < 0.01), it was poorly related to GPP (r 2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AIC cv = 127, ME cv = 0.879) outperformed RSM (AIC cv = 140, ME cv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses demonstrated that GPP predictions with MM are inaccurate whenever no climatic variable explicitly reveals nutrient-related changes in the LUE parameter. These results suggest that RSM is a valuable means to diagnose nutrient-induced effects on the photosynthetic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.