A novel computational methodology for drug design that accommodates receptor flexibility is described. This "relaxed-complex" method recognizes that ligand may bind to conformations that occur only rarely in the dynamics of the receptor. We have shown that the ligand-enzyme binding modes are very sensitive to the enzyme conformations, and our approach is capable of finding the best ligand-enzyme complexes. This new method serves as the computational analog of the experimental "SAR by NMR" and "tether" methods, which permit a building block approach for constructing a very potent drug.
The protease from type 1 human immunodeficiency virus (HIV-1) is a critical drug target against which many therapeutically useful inhibitors have been developed; however, the set of viral strains in the population has been shifting to become more drug-resistant. Because indirect effects are contributing to drug resistance, an examination of the dynamic structures of a wild-type and a mutant could be insightful. Consequently, this study examined structural properties sampled during 22 nsec, all atom molecular dynamics (MD) simulations (in explicit water) of both a wild-type and the drug-resistant V82F/I84V mutant of HIV-1 protease. The V82F/I84V mutation significantly decreases the binding affinity of all HIV-1 protease inhibitors currently used clinically. Simulations have shown that the curling of the tips of the active site flaps immediately results in flap opening. In the 22-nsec MD simulations presented here, more frequent and more rapid curling of the mutant's active site flap tips was observed. The mutant protease's flaps also opened farther than the wild-type's flaps did and displayed more flexibility. This suggests that the effect of the mutations on the equilibrium between the semiopen and closed conformations could be one aspect of the mechanism of drug resistance for this mutant. In addition, correlated fluctuations in the active site and periphery were noted that point to a possible binding site for allosteric inhibitors.
Our previous studies have led to a novel "nonrelease" approach to making materials bactericidal by covalently attaching certain moderately hydrophobic polycations to their surfaces. In the present work, this strategy is extended beyond the heretofore-used nonporous materials to include common woven textiles (cotton, wool, nylon, and polyester). Pieces of such cloths derivatized with N-hexylated+methylated high-molecular-weight polyethylenimine (PEI) are strongly bactericidal against several airborne Gram-positive and Gram-negative bacteria. In contrast, the immobilized and N-alkylated PEIs of low molecular weight have only a weak, if any, bactericidal activity. These findings support a mechanism of the antibacterial action whereby high-molecular-weight and hydrophobic polycationic chains penetrate bacterial cell membranes/walls and fatally damage them. The bactericidal textiles prepared herein are lethal not only to pathogenic bacteria but to fungi as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.