Conventional bulky and rigid power systems are incapable of meeting flexibility and breathability requirements for wearable applications. Despite the tremendous efforts dedicated to developing various 1D energy storage devices with sufficient flexibility, challenges remain pertaining to fabrication scalability, cost, and efficiency. Here, a scalable, low-cost, and high-efficiency 3D printing technology is applied to fabricate a flexible all-fiber lithium-ion battery (LIB). Highly viscous polymer inks containing carbon nanotubes and either lithium iron phosphate (LFP) or lithium titanium oxide (LTO) are used to print LFP fiber cathodes and LTO fiber anodes, respectively. Both fiber electrodes demonstrate good flexibility and high electrochemical performance in half-cell configurations. All-fiber LIB can be successfully assembled by twisting the as-printed LFP and LTO fibers together with gel polymer as the quasi-solid electrolyte. The all-fiber device exhibits a high specific capacity of ≈110 mAh g −1 at a current density of 50 mA g −1 and maintains a good flexibility of the fiber electrodes, which can be potentially integrated into textile fabrics for future wearable electronic applications.
Here, a hierarchical porous NiO film/ITO glass bifunctional electrode has been prepared successfully via growing MOF-74 in situ on ITO, which shows outstanding cycle reversibility, excellent capacitance, and high coloration efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.