The grain refinement during severe plastic deformation (SPD) is predicted using volume averaged amount of dislocations generated. The model incorporates a new expansion of a model for hardening in the parabolic hardening regime, in which the work hardening depends on the effective dislocation free path related to the presence of non shearable particles and solute-solute nearest neighbour interactions.These two mechanisms give rise to dislocation multiplication in the form of generation of geometrically necessary dislocations and dislocations induced by local bond energies. The model predicts the volume averaged amount of dislocations generated and considers that they distribute to create cell walls and move to existing cell walls/grain boundaries where they increase in the grain boundary misorientation. The model predicts grain sizes of Al alloys subjected to SPD over 2 orders of magnitude. The model correctly predicts the considerable influence of Mg content and content of nonshearable particles on the grain refinement during SPD.
The effect of strain reversal on hardening due to high pressure torsion (HPT) was investigated using commercially pure aluminium. Hardening is lower for cyclic HPT (c-HPT) as compared to monotonic HPT (m-HPT). When using a cycle consisting of a rotation of 90° per half cycle, there is only a small increase in hardness if the total amount of turns is increased from 1 to 16.Single reversal HPT (sr-HPT) processing involves torsion in one direction followed by a (smaller) torsion in the opposite direction. It is shown that a small reversal of 0.25 turn (90°) reduces hardness drastically, and that decrease is most marked for the centre region. These behaviours and other effects are interpreted in terms of the average density of geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs). A model is presented that describes the experimental results well. A key element of the model is the assumption that at the very high strains developed in severe plastic deformation processes such as HPT, the dislocation density reaches a saturation value. The model indicates that the strength / hardness is predominantly due to GNDs and SSDs.
The influence of alloying additions on strengthening of high pressure torsion (HPT) processed alloys was investigated using commercially pure Al (Al-1050 alloy) and five Al-(1-3)Mg-(0-4)Cu alloys (in wt%). Microhardness was measured on cross sections. For Al-1050 the microhardness reaches a peak at an effective strain of about 3 and subsequently decreases. The microhardness of Al-Mg-Cu alloys increases strongly and continuously with increasing equivalent strain. This workhardening rate is enhanced by increasing Mg content over the entire range of strain. Furthermore, the workhardening rates were higher in Cu-free and low Cu-containing (≤ 0.4%) Al-Mg alloys as compared to high Cucontaining Al-Mg alloy at strains less than 3. The results indicate that dislocation-solute and dislocation-cluster interactions play an important role in strengthening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.