The conditions required to produce zeolites with low framework density and extra-large pores are discussed. Correlations between framework stability and geometrical and topological descriptors are presented. An attempt has been made to rationalize the synthesis of extra-large-pore zeolites in terms of the synthesis mechanism, the directing effect of the organic structure directing agent (OSDA), the framework atoms, and the gel concentration. Extra-large-pore zeolites, including the recently discovered chiral mesoporous ITQ-37, are described and their catalytic and adsorption properties discussed. Finally, strategies are presented for the preparation of extra-large-pore zeolites with different pore topologies that can fulfill pre-established catalytic and adsorption targets.
The formation of mesopores in microporous zeolites is generally performed by postsynthesis acid, basic, and steam treatments. The hierarchical pore systems thus formed allow better adsorption, diffusion, and reactivity of these materials. By combining organic and inorganic structure-directing agents and high-throughput methodologies, we were able to synthesize a zeolite with a hierarchical system of micropores and mesopores, with channel openings delimited by 28 tetrahedral atoms. Its complex crystalline structure was solved with the use of automated diffraction tomography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.