Monocytes and macrophages are important components of the immune system, specialized in either removing pathogens as part of innate immunity or contributing to adaptive immunity through antigen presentation. Essential to such functions is classical activation (M1) and alternative activation (M2) of macrophages. M1 polarization of macrophages is characterized by production of pro-inflammatory cytokines, antimicrobial and tumoricidal activity, whereas M2 polarization of macrophages is linked to immunosuppression, tumorigenesis, wound repair and elimination of parasites. MiRNAs are small non-coding RNAs with the ability to regulate gene expression and network of cellular processes. A number of studies have determined miRNA expression profiles in M1 and M2 polarized human and murine macrophages using microarray and RT-qPCR arrays techniques. More specifically, miR-9, miR-127, miR-155 and miR-125b have been shown to promote M1 polarization while miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a and miR-125a-5p induce M2 polarization in macrophages by targeting various transcription factors and adaptor proteins. Further, M1 and M2 phenotypes play distinctive roles in cell growth and progression of inflammation-related diseases such as sepsis, obesity, cancer and multiple sclerosis. Hence, miRNAs that modulate macrophage polarization may have therapeutic potential in the treatment of inflammation-related diseases. This review highlights recent findings in miRNA expression profiles in polarized macrophages from murine and human sources, and summarizes how these miRNAs regulate macrophage polarization. Lastly, therapeutic potential of miRNAs in inflammation-related diseases through modulation of macrophage polarization is also discussed.
Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.
Rationale: Mitochondrial Ca 2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca 2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca 2+ uniporter) mediates mitochondrial Ca 2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. Objective: Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca 2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. Methods and Results: Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted ( Mcub − /− ) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca 2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca 2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca 2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub −/− mice were more sensitive to Ca 2+ overload. Conclusions: Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca 2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.