In hypothyroid rat myocardium, the low-ouabain-sensitivity Na,K-ATPase activity had a KI = 10(-4) M and accounted for approximately 95% of the enzyme activity, while the high-ouabain-sensitivity activity contributed approximately 5% to the total activity, with a KI = 3 x 10(-7) M. mRNA alpha 1 was 7.2- and 5.5-fold more abundant than mRNA alpha 2 and mRNA beta, respectively, in hypothyroid ventricles while mRNA alpha 3 was undetectable. Administration of T3 increased total Na,K-ATPase activity 1.6-fold; the low-ouabain-sensitivity activity increased 1.5-fold while high-ouabain-sensitivity activity was stimulated 3.2-fold. T3 increased the number of high-affinity ouabain-binding sites 2.9-fold with no change in Kd (approximately 2 x 10(-7) M). The abundances of mRNA alpha 1, mRNA alpha 2, and mRNA beta (per unit RNA) following T3 treatment increased 3.6-, 10.6-, and 12.7-fold, respectively. The larger increments in subunit mRNA abundances than in Na,K-ATPase activity suggests the involvement of translational and/or post-translational regulatory steps in Na,K-ATPase biogenesis in response to T3. It is concluded that T3 enhances myocardial Na,K-ATPase subunit mRNA abundances and Na,K-ATPase activity, and that the expression of the high- and low-ouabain-sensitivity activities are probably a reflection of the abundances of the alpha 2 and alpha 1 isoforms, respectively. The physiological role played by the beta subunit remains uncertain.
Cells of the murine skeletal muscle line, C2C12, undergo differentiation from mononuclear myoblasts to multinuclear myotubes that express a number of proteins associated with striated muscle. We examined the relationship between the abundance of the mRNAs encoding the fast-twitch Ca-ATPase and the alpha isoforms of Na,K-ATPase and the subsequent expression of their respective polypeptides. Both the mRNA and protein levels of the alpha 1 isoform remained constant throughout differentiation. In contrast, the content of mRNAs encoding the alpha 2 isoform and fast-twitch Ca-ATPase increased coordinately with the abundance of their corresponding polypeptides during myotube development. Despite the dramatic increase in alpha 2 expression, estimates of in vitro Na,K-ATPase activity and assessments of in vivo transport activity suggest that alpha 2 contributes little to ionic homeostasis in C2C12 myotubes.
Regulation of Na,K-ATPase mRNA alpha isoform and mRNA beta expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNA alpha 1, mRNA alpha 3, and mRNA beta 1 abundances were nearly constant while mRNA alpha 2 was undetectable. During the interval between postnatal days 5 and 15, mRNA alpha 3 decreased to negligible levels and mRNA alpha 2 became expressed and increased in abundance to account for approximately 20% of the mRNA alpha pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 micrograms T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNA alpha 1, mRNA alpha 3, and mRNA beta 1 increased, while mRNA alpha 2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a "molecular switch" in the developmental expression of the mRNA alpha isoforms in rat myocardium during the first four postnatal days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.