Accurate and fast indoor Location-Based Services (LBS) is very important for daily life and emergency response. Indoor map is the basis of indoor LBS. The model construction and data organization of indoor map are the key scientific problems that urgently need to be solved in the current indoor LBS application. In recent years, hybrid models have been used widely in the research of indoor map, because they can balance the limitations of single models. However, the current studies about hybrid model pay more attention to the model accuracy and modeling algorithm, while ignoring its relationship between positioning and navigation and its practicality in mobile indoor LBS applications. This paper addresses a new indoor map model, named Building Information Modeling based Positioning and Navigation (BIMPN), which is based on the entity model and the network model. The highlight of BIMPN is that it proposes a concept of Step Node (SN) to assist indoor positioning and navigation function. We developed the Mobile Indoor Positioning and Navigation System (MIPNS) to verify the practicability of BIMPN. Results indicate that the BIMPN can effectively organize the characteristics of indoor spaces and the building features, and assist indoor positioning and navigation. The BIMPN proposed in this paper can be used for the construction of indoor maps and it is suitable for mobile indoor positioning and navigation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.