Against the backdrop of global climate change, the frequency of drought events is increasing, leading to significant impacts on human society and development. Therefore, it is crucial to study the propagation patterns and trends of drought characteristics over a long timescale. The main objective of this study is to delineate the dynamics of drought characteristics by examining their propagation patterns in China from 1951 to 2020. In this study, precipitation data from meteorological stations across mainland China were used. A comprehensive dataset consisting of 700 stations over the past 70 years was collected and analyzed. To ensure data accuracy, the GPCC (the Global Precipitation Climatology Center) database was employed for data correction and gap-filling. Long-term drought evolution was assessed using both the SPI-12 (standardized precipitation index) and SPEI-12 (standardized precipitation evapotranspiration index) to detect drought characteristics. Two Moran indices were applied to identify propagation patterns, and the MK (the Mann–Kendall) analysis method, along with the Theil–Sen slope estimator, was utilized to track historical trends of these indices. The findings of this study reveal the following key results: (i) Based on the SPI-12, the main areas of China that are prone to drought are mostly concentrated around the Hu Huanyong Line, indicating a tendency towards drying based on the decadal change analysis. (ii) The distribution of drought-prone areas in China, as indicated by the SPEI-12, is extensive and widely distributed, with a correlation to urbanization and population density. These drought-prone areas are gradually expanding. (iii) Between 2010 and 2011, China experienced the most severe drought event in nearly 70 years, affecting nearly 50% of the country’s area with a high degree of severity. This event may be attributed to atmospheric circulation variability, exacerbated by the impact of urbanization on precipitation and drought. (iv) The frequency of drought occurrence in China gradually decreases from south to north, with the northeast and northern regions being less affected. However, areas with less frequent droughts experience longer and more severe drought durations. In conclusion, this study provides valuable insights into the characteristics and propagation patterns of drought in China, offering essential information for the development of effective strategies to mitigate the impacts of drought events.
Against the backdrop of global climate change, the frequency of drought events is increasing, leading to significant impacts on human society and development. Therefore, it is crucial to study the propagation patterns and trends of drought characteristics over a long-time scale. The main objective of this study is to delineate the dynamics of drought characteristics by examining their propagation patterns in China from 1951 to 2020. In this study, precipitation data from meteorological stations across mainland China were used. A comprehensive dataset consisting of 700 stations over the past 70 years was collected and analyzed. To ensure data accuracy, the GPCC database was employed for data correction and gap filling. Long-term drought evolution was assessed using both the SPI-12 and SPEI-12 indices to detect drought characteristics. Two Moran indices were applied to identify propagation patterns, and the MK analysis method along with the Theil-Sen slope estimator were utilized to track historical trends of these indices. The findings of this study reveal the following key results: (i) Based on the SPI-12, the main areas of China that are prone to drought are mostly concentrated around the Hu Huanyong Line. Indicating a tendency towards drying based on the decadal change analysis. (ii) The distribution of drought-prone areas in China, as indicated by the SPEI-12, is extensive and broadly distributed, with a correlation to urbanization and population density. These drought-prone areas are gradually expanding. (iii) Between 2010 and 2011, China experienced the most severe drought event in nearly 70 years, affecting nearly 50% of the country's area with a high degree of severity. This event may be attributed to atmospheric circulation variability, exacerbated by the impact of urbanization on precipitation and drought. (iv) The frequency of drought occurrence in China gradually decreases from south to north, with the northeast and northern regions being less affected. However, areas with less frequent droughts experience longer and more severe drought durations. In conclusion, this study provides valuable insights into the characteristics and propagation patterns of drought in China, offering essential information for the development of effective strategies to mitigate the impacts of drought events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.