All-solid-state batteries (ASSBs) have attracted considerable attention because of their higher energy density and stability than conventional lithium-ion batteries (LIBs). For the development of promising ASSBs, solid-state electrolytes (SSEs) are essential to achieve structural integrity. Thus, in this study, a machine-learning-based surrogate model was developed to search for ideal garnet-type SSE candidates. The well-known Li 7 La 3 Zr 2 O 12 structure was used as a base material, and 73 chemical elements were substituted on La and Zr sites, leading to 5329 potential structures. First, the elasticity database and machine learning descriptors were adopted from previous studies. Subsequently, the machine-learning-based surrogate model was applied to predict the elastic properties of potential SSE materials, followed by first-principles calculations for validation. Furthermore, the active learning process demonstrated that it can effectively decrease prediction uncertainty. Finally, the ionic conductivity of the mechanically superior materials was predicted to suggest optimal SSE candidates. Then, ab initio molecular dynamics simulations are followed for confirmation of diffusion behavior for materials classified as superionic; 10 new tetragonal-phase garnet SSEs are verified with superior mechanical and ionic conductivity properties. We believe that the current model and the constructed database will become a cornerstone for the development of next-generation SSE materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.