In automotive systems, a radar is a key component of autonomous driving. Using transmit and reflected radar signal by a target, we can capture the target range and velocity. However, when interference signals exist, noise floor increases and it severely affects the detectability of target objects. For these reasons, previous studies have been proposed to cancel interference or reconstruct original signals. However, the conventional signal processing methods for canceling the interference or reconstructing the transmit signals are difficult tasks, and also have many restrictions. In this work, we propose a novel approach to mitigate interference using deep learning. The proposed method provides high performance in various interference conditions and has low processing time. Moreover, we show that our proposed method achieves better performance compared to existing signal processing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.