Summary In Hevea brasiliensis, an alkaline/neutral invertase (A/N‐Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber‐producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N‐Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N‐Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N‐Inv gene functioning in latex based on its functionality in E. coli, its latex‐predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N‐Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N‐Invs in other plants. We conclude that HbNIN2, a cytosolic A/N‐Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.
Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.