Silver nanowires (AgNWs) networks are promising candidates for the replacement of indium tin oxide (ITO). However, the surface roughness of the AgNWs network is still too high for its application in optoelectronic devices. In this work, we have reduced the surface roughness of the AgNWs networks to 6.4 nm, compared to 33.9 nm of the as-deposited AgNWs network through the hot-pressing process, treatment with poly (3,4ethylenedioxythiophene)–poly (styrenesulfanate), and covered with graphene films. Using this method, we are able to produce AgNWs/PEDOT: PSS/SLG composite films with the transmittance and sheet resistance of 88.29% and 30 Ω/□, respectively. The OLEDs based on the AgNWs/PEDOT: PSS/SLG anodes are comparable to those based on ITO anodes.
Graphene is a promising candidate for the replacement of the typical transparent electrode indium tin oxide in optoelectronic devices. Currently, the application of polycrystalline graphene films grown by chemical vapor deposition is limited for their low electrical conductivity due to the poor transfer technique. In this work, we developed a new method of preparing tri-layer graphene films with chemical modification and explored the influence of doping and patterning process on the performance of the graphene films as transparent electrodes. In order to demonstrate the application of the tri-layer graphene films in optoelectronics, we fabricated the organic light-emitting diodes (OLEDs) based on them and found that plasma etching is feasible with certain influence on the quality of the graphene films and the performance of the OLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.