We present a fuzzy version of the Garman-Kohlhagen (FG-K) formula for pricing European currency option based on the extension principle. In order to keep consistent with the real market, we assume that the interest rate, the spot exchange rate, and the volatility are fuzzy numbers in the FG-K formula. The conditions of a basic proposition about the fuzzy-valued functions of fuzzy subsets are modified. Based on the modified conditions and the extension principle, we prove that the fuzzy price obtained from the FG-K formula for European currency option is a fuzzy number. To simplify the trade, the weighted possibilistic mean (WPM) value with a weighting function is adopted to defuzzify the fuzzy price to a crisp price. The numerical example shows our method makes theα-level set of fuzzy price smaller, which decreases the fuzziness. The example also indicates that the WPM value has different approximation effects to real market price by taking different values of weighting parameter in the weighting function. Inspired by this example, we provide a method, which can identify the optimal parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.