Oil shortages and environmental pollution are attracting worldwide attention incrementally. Hybrid falls within one of the effective techniques for those two problems. Taking the loader with high energy consumption and high emission as the target, combined with the hydraulic hybrid technology with high power density and strong energy storage capacity, the parallel hydraulic hybrid loader (PHHL) based on brake energy regeneration is proposed. Firstly, the dynamic models of the key components of the PHHL are established, and the parameters of the part which coincides with the ordinary loader are corrected based on the V-type duty cycle. Then, consid-ering the energy recovery efficiency as well as the characteristics of the loader from the V-type duty cycle, the parameters for several major parts of the energy regeneration system (ERS) were calculated and matched. Then, based on the initial matching, the improved adaptive genetic al-gorithm (AGA) is employed to optimize the control variable of the control strategy and the design parameters of ERS to enhance the economic benefit and performance of the ERS. Furthermore, a simulation validation was conducted. Simulation results show that the ERS with optimized pa-rameters could improve the fuel-saving effect by 25% compared to the ERS with initial parameters, which indicated the rationality of the optimized parameters. Finally, the fuel consumption test of the PHHL prototype under the V-type duty cycle is performed. The results show that the PHHL with the optimization scheme can achieve 9.12% fuel saving, which is on the brink of the potential of brake energy recovery and verifies the feasibility of applying hydraulic hybrid technology on the loader.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.