A concerted effort to tackle the global health problem posed by traumatic brain injury (TBI) is long overdue. TBI is a public health challenge of vast, but insufficiently recognised, proportions. Worldwide, more than 50 million people have a TBI each year, and it is estimated that about half the world's population will have one or more TBIs over their lifetime. TBI is the leading cause of mortality in young adults and a major cause of death and disability across all ages in all countries, with a disproportionate burden of disability and death occurring in low-income and middle-income countries (LMICs). It has been estimated that TBI costs the global economy approximately $US400 billion annually. Deficiencies in prevention, care, and research urgently need to be addressed to reduce the huge burden and societal costs of TBI. This Commission highlights priorities and provides expert recommendations for all stakeholders—policy makers, funders, health-care professionals, researchers, and patient representatives—on clinical and research strategies to reduce this growing public health problem and improve the lives of people with TBI.Additional co-authors: Endre Czeiter, Marek Czosnyka, Ramon Diaz-Arrastia, Jens P Dreier, Ann-Christine Duhaime, Ari Ercole, Thomas A van Essen, Valery L Feigin, Guoyi Gao, Joseph Giacino, Laura E Gonzalez-Lara, Russell L Gruen, Deepak Gupta, Jed A Hartings, Sean Hill, Ji-yao Jiang, Naomi Ketharanathan, Erwin J O Kompanje, Linda Lanyon, Steven Laureys, Fiona Lecky, Harvey Levin, Hester F Lingsma, Marc Maegele, Marek Majdan, Geoffrey Manley, Jill Marsteller, Luciana Mascia, Charles McFadyen, Stefania Mondello, Virginia Newcombe, Aarno Palotie, Paul M Parizel, Wilco Peul, James Piercy, Suzanne Polinder, Louis Puybasset, Todd E Rasmussen, Rolf Rossaint, Peter Smielewski, Jeannette Söderberg, Simon J Stanworth, Murray B Stein, Nicole von Steinbüchel, William Stewart, Ewout W Steyerberg, Nino Stocchetti, Anneliese Synnot, Braden Te Ao, Olli Tenovuo, Alice Theadom, Dick Tibboel, Walter Videtta, Kevin K W Wang, W Huw Williams, Kristine Yaffe for the InTBIR Participants and Investigator
No abstract
Summary Aims Ferroptosis, a new form of iron‐dependent programmed cell death, has been shown to be involved in a range of diseases. However, the role of ferroptosis in traumatic brain injury (TBI) has yet to be elucidated. We aimed to investigate whether ferroptosis is induced after TBI and whether the inhibition of ferroptosis would protect against traumatic brain injury in a controlled cortical impact injury (CCI) mouse model. Methods After establishing the TBI model in mice, we determined the biochemical and morphological changes associated with ferroptosis, including iron accumulation with Perl's staining, neuronal cell death with Fluoro‐Jade B (FJB) staining, iron metabolism dysfunction with Western blotting, reactive oxygen species (ROS) accumulation with malondialdehyde (MDA) assays, and shrunken mitochondria with transmission electron microscopy. Furthermore, a specific inhibitor of ferroptosis, ferrostatin‐1(fer‐1), was administrated by cerebral ventricular injection after CCI. We used cresyl violet (CV) staining to assess lesion volume, along with the Morris water maze and beam walk test to evaluate long‐term outcomes. Results TBI was followed by iron accumulation, dysfunctional iron metabolism, the upregulation of ferroptosis‐related genes, reduced glutathione peroxidase (GPx) activity, and the accumulation of lipid‐reactive oxygen species (ROS). Three days (d) after TBI, transmission electron microscopy (TEM) confirmed that the mitochondria had shrunk a typical characteristic of ferroptosis. Importantly, the administration of Fer‐1 by cerebral ventricular injection significantly reduced iron deposition and neuronal degeneration while attenuating injury lesions and improving long‐term motor and cognitive function. Conclusion This study demonstrated an effective method with which to treat TBI by targeting ferroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.