Electrophoretic deposition (EPD) coating has become a hot topic due to its simple experiment, wide application, and wide material range. In this study, the PTFE coating was successfully prepared by electrophoretic deposition through the systematic study of electrophoretic deposition kinetics. In particular, in the dispersion system with ethanol as solvent, Nafion and NaOH were simultaneously added as additives to obtain a beneficial synergistic effect on PTFE electrophoretic deposition. And the best additive scheme is: when the concentration of PTFE was 6 g·L− 1 and the deposition time was increased to 20 min, adding 0.10 g·L− 1 Nafion and 0.10 mM NaOH simultaneously. Compared with the scheme with Nafion being only additive, the addition of NaOH can improve the deposition rate from 0.16 mg·cm− 2 to 0.98 mg·cm− 2, and the deposition rate increases by about 6 times. According to electrophoretic deposition kinetics, there is an obvious critical transition time between linear and parabolic regions in the preparation of the coating. Prolonging the arrival of critical transition time is beneficial to effectively achieve stable growth of the coating in a longer time. It is found that a more ideal additive can not only increase the deposition rate of coating, but also significantly accelerate the arrival of critical transition time. Meanwhile, the deposition voltage also has an important influence on the critical transition time. Increasing the voltage can improve the deposition speed but shorten the critical transition time. Therefore, the application of deposition voltage needs to strike a balance between deposition rate and critical time point. The optimal deposition conditions proposed in this work are: deposition voltage 60 V, deposition time 20 min, additive 0.10 g·L− 1 Nafion and 0.10 mM NaOH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.