SUMMARY In order to overcome the drawback of TVQI and to utilize the property of dimensionality increasing techniques, a novel model for Kernel TV-based Quotient Image employing Gabor analysis is proposed and applied to face recognition with only one sample per subject. To deal with illumination outliers, an enhanced TV-based quotient image (ETVQI) model is first adopted. Then for preprocessed images by ETVQI, a bank of Gabor filters is built to extract features at specified scales and orientations. Lastly, KPCA is introduced to extract final high-order and nonlinear features of extracted Gabor features. According to experiments on the CAS-PEAL face database, our model could outperform Gabor-based KPCA, TVQI and Gabor-based TVQI when they face most outliers (illumination, expression, masking etc.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.