This paper treats estimation in a class of new nonlinear threshold autoregressive models with both a stationary and a unit root regime. Existing literature on nonstationary threshold models have basically focused on models where the nonstationarity can be removed by differencing and/or where the threshold variable is stationary. This is not the case for the process we consider, and nonstandard estimation problems are the result. This paper proposes a parameter estimation method for such nonlinear threshold autoregressive models using the theory of null recurrent Markov chains. Under certain assumptions, we show that the ordinary least squares (OLS) estimators of the parameters involved are asymptotically consistent.Furthermore, it can be shown that the OLS estimator of the coefficient parameter involved in the stationary regime can still be asymptotically normal while the OLS estimator of the coefficient parameter involved in the nonstationary regime has a nonstandard asymptotic distribution. In the limit, the rate of convergence in the stationary regime is asymptotically proportional to n − 1 4 , whereas it is n −1 in the nonstationary regime. The proposed theory and estimation method are illustrated by both simulated and real data examples.
This paper considers a general model specification test for nonlinear multivariate cointegrating regressions where the regressor consists of a univariate integrated time series and a vector of stationary time series. The regressors and the errors are generated from the same innovations, so that the model accommodates endogeniety. A new and simple test is proposed and the resulting asymptotic theory is established. The test statistic is constructed based on a natural distance function between a nonparametric estimate and a smoothed parametric counterpart. The asymptotic distribution of the test statistic under the parametric specification is proportional to that of a local-time random variable with a known distribution. In addition, the finite sample performance of the proposed test is evaluated through using both simulated and real data examples.
Multiperiodic functions, or functions that can be represented as finite additive mixtures of periodic functions, arise in problems related to stellar radiation. There they represent the overall variation in radiation intensity with time. The individual periodic components generally correspond to different sources of radiation and have intrinsic physical meaning provided that they can be 'deconvolved' from the mixture. We suggest a combination of kernel and orthogonal series methods for performing the deconvolution, and we show how to estimate both the sequence of periods and the periodic functions themselves. We pay particular attention to the issue of identifiability, in a nonparametric sense, of the components. This aspect of the problem is shown to exhibit particularly unusual features, and to have connections to number theory. The matter of rates of convergence of estimators also has links there, although we show that the rate-of-convergence problem can be treated from a relatively conventional viewpoint by considering an appropriate prior distribution for the periods. Copyright 2003 Royal Statistical Society.
This paper treats estimation in a class of new nonlinear threshold autoregressive models with both a stationary and a unit root regime. Existing literature on nonstationary threshold models have basically focused on models where the nonstationarity can be removed by differencing and/or where the threshold variable is stationary. This is not the case for the process we consider, and nonstandard estimation problems are the result. This paper proposes a parameter estimation method for such nonlinear threshold autoregressive models using the theory of null recurrent Markov chains. Under certain assumptions, we show that the ordinary least squares (OLS) estimators of the parameters involved are asymptotically consistent.Furthermore, it can be shown that the OLS estimator of the coefficient parameter involved in the stationary regime can still be asymptotically normal while the OLS estimator of the coefficient parameter involved in the nonstationary regime has a nonstandard asymptotic distribution. In the limit, the rate of convergence in the stationary regime is asymptotically proportional to n − 1 4 , whereas it is n −1 in the nonstationary regime. The proposed theory and estimation method are illustrated by both simulated and real data examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.