A B S T R A C TThis paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The longterm demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400-1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100.
Five new scenarios, or Shared Socioeconomic Pathways (SSPs), have been developed, spanning a range of challenges to mitigation and challenges to adaptation. The Shared Socioeconomic Pathway 4 (SSP4), "Inequality" or "A Road Divided," is one of these scenarios, characterized by low challenges to mitigation and high challenges to adaptation. We describe, in quantitative terms, the SSP4 as implemented by the Global Change Assessment Model (GCAM), the marker model for this scenario. We use demographic and economic assumptions, in combination with technology and non-climate policy assumptions to develop a quantitative representation of energy, land-use and land-cover, and emissions consistent with the SSP4 narrative. The scenario is one with stark differences within and across regions. High-income regions prosper, continuing to increase their demand for energy and food. Electrification increases in these regions, with the increased generation being met by nuclear and renewables. Low-income regions, however, stagnate due to limited economic growth. Growth in total consumption is dominated by increases in population, not increases in per capita consumption. Due to failures in energy access policies, these regions continue to depend on traditional biofuels, leading to high pollutant emissions. Declining dependence on fossil fuels in all regions means that total radiative forcing absent the inclusion of mitigation or impacts only reaches 6.4 W m -2 in 2100, making this a world with relatively low challenges to mitigation. We explore the effects of mitigation effort on the SSP4 world, finding that the imposition of a carbon price has a varied effect across regions. In particular, the SSP4 mitigation scenarios are characterized by afforestation in the high-income regions and deforestation in the low-income regions. Furthermore, we find that the SSP4 is a world with low challenges to mitigation, but only to a point due to incomplete mitigation of landrelated emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.