A new synthetic approach toward intermolecular oxidative C-N bond formation of arenes has been developed under transition-metal-free conditions. Complete control of chemoselectivity between aryl sp(2) and benzylic sp(3) C-H bond imidation was achieved by the choice of nitrogen sources, representatively being phthalimide and dibenzenesulfonimide, respectively.
Direct CH amidation of arylphosphoryl compounds has been developed by using an Ir(III) catalyst system under mild conditions. A wide range of substrates could be employed with high functional-group tolerance. This procedure was successfully applied for the first time to the asymmetric reaction giving rise to a P-chirogenic center with a high diastereomeric ratio of up to 19:1 (90 % de).
A complete switch in the Cp*Ir(III)-catalyzed paths between C-H olefination and hydroarylation was found to be crucially dependent on the type of directing groups. This dichotomy in product distribution was correlated to the efficiency in attaining syn-coplanarity of olefin-inserted 7-membered iridacycles. Theoretical studies support our hypothesis that the degree of flexibility of this key intermediate modulates the β-H elimination, which ultimately affords the observed chemoselectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.