In this paper, the attitude and height tracking control problem is studied for unmanned helicopters with disturbances. To solve the problem, a composite control scheme is proposed based on the combination of dynamic surface control and disturbance observer-based control techniques. The control design includes two parts. In the first part, some nonlinear disturbance observers are designed to accurately estimate the helicopter’s disturbances in different channels. In the second part, based on the disturbance estimates and dynamic surface control technique, a composite dynamic surface tracking controller is designed. Under the proposed composite controller, the attitude and height tracking errors are uniformly ultimately bounded and they can be regulated to be very small by selecting proper controller parameters. For one thing, the proposed control scheme avoids “explosion of terms”, which generally exists in conventional backstepping control and provides a simpler control design. For another thing, without sacrificing the nominal control performances, the anti-disturbance ability of the closed-loop helicopter system is enhanced by using disturbance observers and feedforward compensations. Numerical simulations demonstrate the effectiveness and advantages of the proposed composite tracking controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.