An overview is presented with regard to applications of visible and near infrared (Vis/NIR) spectroscopy, multispectral imaging and hyperspectral imaging techniques for quality attributes measurement and variety discrimination of various fruit species, i.e., apple, orange, kiwifruit, peach, grape, strawberry, grape, jujube, banana, mango and others. Some commonly utilized chemometrics including pretreatment methods, variable selection methods, discriminant methods and calibration methods are briefly introduced. The comprehensive review of applications, which concentrates primarily on Vis/NIR spectroscopy, are arranged according to fruit species. Most of the applications are focused on variety discrimination or the measurement of soluble solids content (SSC), acidity and firmness, but also some measurements involving dry matter, vitamin C, polyphenols and pigments have been reported. The feasibility of different spectral modes, i.e., reflectance, interactance and transmittance, are discussed. Optimal variable selection methods and calibration methods for measuring different attributes of different fruit species are addressed. Special attention is paid to sample preparation and the influence of the environment. Areas where further investigation is needed and problems concerning model robustness and model transfer are identified.
Fast detection of heavy metals in plant materials is crucial for environmental remediation and ensuring food safety. However, most plant materials contain high moisture content, the influence of which cannot be simply ignored. Hence, we proposed moisture influence reducing method for fast detection of heavy metals using laser-induced breakdown spectroscopy (LIBS). First, we investigated the effect of moisture content on signal intensity, stability, and plasma parameters (temperature and electron density) and determined the main influential factors (experimental parameters F and the change of analyte concentration) on the variations of signal. For chromium content detection, the rice leaves were performed with a quick drying procedure, and two strategies were further used to reduce the effect of moisture content and shot-to-shot fluctuation. An exponential model based on the intensity of background was used to correct the actual element concentration in analyte. Also, the ratio of signal-to-background for univariable calibration and partial least squared regression (PLSR) for multivariable calibration were used to compensate the prediction deviations. The PLSR calibration model obtained the best result, with the correlation coefficient of 0.9669 and root-mean-square error of 4.75 mg/kg in the prediction set. The preliminary results indicated that the proposed method allowed for the detection of heavy metals in plant materials using LIBS, and it could be possibly used for element mapping in future work.
Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe production loss and affect the quality of products. In this study, we have proposed a novel approach to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish classification models based on full spectrum and observed emission lines. The influences of moisture content on spectral profile, signal stability and plasma parameters (temperature and electron density) were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen the stability of analysis, and have a detrimental effect on the classification results. Good classification results were achieved based on the data from both full spectrum and observed emission lines of dried leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector machine (SVM) could improve the classification results and eliminate influences of moisture content. The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and low-cost approach for TMV-infected disease detection in tobacco leaves.
Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.