In this paper, in order to solve the problem of unbalance vibration of rigid rotor system supported by the active magnetic bearing (AMB), automatic balancing method is applied to suppress the unbalance vibration of the rotor system. Firstly, considering the dynamic and static imbalance of the rotor, the detailed dynamic equations of the AMB-rigid rotor system are established according to Newton’s second law. Then, in order to rotate the rotor around the inertia axis, the notch filter with phase compensation is used to eliminate the synchronous control current. Finally, the variable-step fourth-order Runge–Kutta iteration method is used to solve the unbalanced vibration response of the rotor system in MATLAB simulation. The effects of the rotational speed and phase compensation angle on the unbalanced vibration control are analysed in detail. It is found that the synchronous control currents would increase rapidly with the increase of rotational speed if the unbalance vibration cannot be controlled. When the notch filter with phase shift is used to balance the rotor system automatically, the control current is reduced significantly. It avoids the saturation of the power amplifier and reduces the vibration response of the rotor system. The rotor system can be stabilized over the entire operating speed range by adjusting the compensation phase of the notch filter. The method in the paper is easy to implement, and the research result can provide theoretical support for the unbalance vibration control of AMB-rotor systems.
The phenomenon of oil film oscillation and frequency locked may occur in a healthy rotor system which is supported by sliding bearing. The dynamic behavior of the rotor system with misalignment and rubbing coupling fault supported by sliding bearing is also very complex. To solve the problem of fault diagnosis in this case, a dynamical model of rotor system is proposed in this paper. The short bearing oil film force, the equivalent misalignment moment, and Hertz contact theory are applied to establish the model. For rubbing faults, the Augmented Lagrange method is used to deal with the contact constraints to ensure that the boundary penetration depth is within the specified tolerance range. Furthermore, the dynamic behavior of the faulty rotor system under different rubbing stiffness conditions is analyzed in this paper. Meanwhile, the fault signal is divided into equal-band by the wavelet basis functions to find out the fault frequency band of the rotor system. Finally, the accuracy of the simulation study is verified by measurements obtained from the faulty rotor test platform. The following findings are made in this paper. The rubbing fault is dominant in the coupling fault. With the increasing of the speed, the frequency components of the system are dominated by high frequency. The double frequency is the main fault feature frequency band. It can be seen that the rotor system moves gradually from a quasi-periodic state into chaos due to the Lyapunov exponent. At the same time, due to the effects of misalignment moment and friction force, the phenomenon of oil film instability is partially suppressed. The lagging of the first and second-order oil film oscillations occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.