High-entropy perovskite fluorides
(HEPFs) have great potential
in electrocatalysis that has not been realized because of the limitation
of a high-temperature synthetic route and the limited understanding
of high-entropy materials. The use of HEPFs in effective oxygen evolution
catalysis and a feasible synthesis route for HEPFs in a boiled solution
by combining a hydrothermal method with mechanochemistry are first
reported here. These HEPFs consisting of cost-effective elements dramatically
gave excellent catalytic activity for the oxygen evolution reaction
in an alkaline media.
Hollow nanostructures afford intriguing structural features ranging from large surface area and fully exposed active sites to kinetically favorable mass transportation and tunable surface permeability. The unique properties and potential applications of graphene nanoshells with well-defined small cavities and delicately designed graphene shells are strongly considered. Herein, a mesoscale approach to fabricate graphene nanoshells with a single or few graphene layers and quite small diameters through a catalytic self-limited assembly of nanographene on in situ formed nanoparticles was proposed. The graphene nanoshells with a diameter of ca. 10-30 nm and a pore volume of 1.98 cm(3) g(-1) were employed as hosts to accommodate the sulfur for high-rate lithium-sulfur batteries. A very high initial discharge capacity of 1520 mAh g(-1), corresponding to 91% sulfur utilization rate at 0.1 C, was achieved on a graphene nanoshell/sulfur composite with 62 wt % loading. A very high retention of 70% was maintained when the current density increased from 0.1 C to 2.0 C, and an ultraslow decay rate of 0.06% per cycle during 1000 cycles was detected.
A novel leaven dough method was developed to prepare three-dimensional Ni foams, upon which a thin NiO nanostructure was grown through thermal oxidation to form NiO/Ni foams as a highly efficient electrocatalyst for oxygen evolution reactions (OER).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.