The pathogenesis of dengue virus (DV) infection has not been completely defined and change of redox status mediated by depletion of glutathione (GSH) in host cell is a common result of viral infection. Our previous study has demonstrated that DV serotype 2 (DV2) infection alters host intracellular GSH levels, and exogenous GSH inhibits viral production by modulating the activity of NF-κB in HepG2 cells. GSH is the most powerful intracellular antioxidant and involved in viral infections. Thus, this study was to investigate whether DV2 infection can induce alteration in redox balance and effect of GSH on the disease in HepG2 xenografts SCID mice. Our results revealed that mice infected with DV2 showed alterations in oxidative stress by increasing the level of malondialdehyde (MDA), an end product of lipid peroxidation, and GSSG/GSH ratio. DV2-infected mice also showed a decrease in the activity of catalase (CAT) and total superoxide dismutase (T-SOD) in the serum and/or observed organs, especially the liver. Moreover, DV2 infection resulted in elevated serum levels of the cytokines tumor necrosis factor-α and interlukin-6 and obvious histopathological changes in the liver. The administration of exogenous GSH significantly reversed all of the aforementioned pathological changes and prevented significant liver damage. Furthermore, in vitro treatment of HepG2 cells with antioxidants such as GSH inhibited viral entry as well as the production of reactive oxygen species in HepG2 cells. These results suggest that GSH prevents DV2-induced oxidative stress and liver injury in mice by inhibiting proinflammatory cytokine production, and GSH and may be a promising therapeutic agent for prevention of oxidative liver damage during DV infection.
Background. Repetitive transcranial magnetic stimulation (rTMS) is a promising therapeutic tool for Parkinson’s disease (PD), and many stimulation targets have been implicated. We aim to explore whether low-frequency rTMS over the right dorsolateral prefrontal cortex (DLPFC) improves motor and nonmotor symptoms of individuals with PD. Methods. We conducted a randomized, single-blind, sham-controlled parallel trial to compare the effect of 10 consecutive daily sessions of 1 Hz rTMS over right DLPFC on individuals with idiopathic PD between active and sham rTMS group. Primary outcomes were changes in Unified Parkinson’s Disease Rating Scale (UPDRS) part III and Nonmotor Symptom Questionnaire (NMSQ). Secondary outcomes were changes in UPDRS total score, Hamilton Rating Scale for Depression (HRSD), Pittsburgh Sleep Quality Index (PSQI), and Montreal Cognitive Assessment (MoCA). Assessments were completed at baseline, after treatment, and at 1 month, 3 months, and 6 months after treatment. Results. A total of 33 participants with PD were randomized. All participants completed the study and no severe adverse effect was noticed. Compared to baseline, active rTMS showed significant improvements in UPDRS part III and NMSQ at 1 month. Change of scores on UPDRS part III, HRSD, and PSQI persisted for 3 months after rTMS intervention. The beneficial effect on cognitive performance assessed by MoCA was maintained for at least 6 months in the follow-up. No significant changes were observed in the group with sham rTMS. Conclusions. Low-frequency rTMS of right DLPFC could be a potential selection in managing motor and nonmotor symptoms in PD.
BRD4 is well known for its role in super-enhancer organization and transcription activation of several prominent oncogenes including c-MYC and BCL2. As such, BRD4 inhibitors are being pursued as promising therapeutics for cancer treatment. However, drug resistance also occurs for BRD4-targeted therapies. Here, we report that BRD4 unexpectedly interacts with the LSD1/NuRD complex and colocalizes with this repressive complex on super-enhancers. Integrative genomic and epigenomic analyses indicate that the BRD4/LSD1/NuRD complex restricts the hyperactivation of a cluster of genes that are functionally linked to drug resistance. Intriguingly, treatment of breast cancer cells with a small-molecule inhibitor of BRD4, JQ1, results in no immediate activation of the drug-resistant genes, but long-time treatment or destabilization of LSD1 by PELI1 decommissions the BRD4/LSD1/NuRD complex, leading to resistance to JQ1 as well as to a broad spectrum of therapeutic compounds. Consistently, PELI1 is up-regulated in breast carcinomas, its level is negatively correlated with that of LSD1, and the expression level of the BRD4/LSD1/NuRD complex–restricted genes is strongly correlated with a worse overall survival of breast cancer patients. Together, our study uncovers a functional duality of BRD4 in super-enhancer organization of transcription activation and repression linking to oncogenesis and chemoresistance, respectively, supporting the pursuit of a combined targeting of BRD4 and PELI1 in effective treatment of breast cancer.
Background Human urine-derived stem cells (USCs)-derived exosomes (USC-Exo) could improve kidney ischemia/reperfusion injury (IRI), while the underlying mechanisms of this protective effect remain unclear. Methods Human USCs and USC-Exo were isolated and verified by morphology and specific biomarkers. The effects of USC-Exo on ferroptosis and kidney injury were detected in the IRI-induced acute kidney injury (AKI) model in C57BL/6 mice. The effects of USC-Exo on ferroptosis and lncRNA taurine-upregulated gene 1 (TUG1) were detected in hypoxia/reoxygenation (H/R)-treated human proximal tubular epithelial cells (HK-2). The interaction of SRSF1 and TUG1, ACSL4 was checked via RNA pull-down/RIP and RNA stability assays. The effects of LncRNA TUG1 on SRSF1/ACSL4-mediated ferroptosis were verified in H/R-treated HK-2 cells and the IRI-induced AKI mouse models. Results USC-Exo treatment improved kidney injury and ameliorated ferroptosis in IRI-induced AKI mouse models. USC-Exo were rich in lncRNA TUG1, which suppressed ferroptosis in HK-2 cells exposed to H/R. Mechanistically, lncRNA TUG1 regulates the stability of ACSL4 mRNA by interacting with RNA-binding protein SRSF1. In addition, SRSF1 upregulation or ACSL4 downregulation partially reversed the protective effect of lncRNA TUG1 on ferroptosis in H/R-treated HK-2 cells. Further, ACSL4 upregulation partially reversed TUG1’s repression on kidney injury and ferroptosis in IRI-induced AKI mice. Conclusion Collectively, lncRNA TUG1 carried by USC-Exo regulated ASCL4-mediated ferroptosis by interacting with SRSF1 and then protected IRI-induced AKI. Potentially, USC-Exo rich in lncRNA TUG1 can serve as a promising therapeutic method for IRI-AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.