A methodology for the simultaneous modulation of the chemical and physical states of an amorphous TiO x layer surface and its impact on the subsequent deposition of a polycrystalline Ag layer are presented. The smoothened TiO x layer surface comprising chemically altered, oxygen-deficient states serves as a nucleating platform for Ag deposition, facilitating a marked increase (∼75%) in the nucleation number density, which strongly enhances the wettability of ultrathin Ag layers. The physically smoothened TiO x /Ag interface further reduces the optical and electrical losses. When the proposed methodology is applied to TiO x /Ag/ZnO transparent conductive electrodes (TCEs), exceptional TCE properties are yielded owing to the simultaneous improvement in visible transparency and electrical conductivity; specifically, a record-high 0.22 Ω −1 Haacke figure of merit is realized. TCEs are prepared on flexible substrates to verify their applicability as stand-alone flexible transparent heaters and as integrated heaters within electrochromic devices to enhance color-switching reactions.
In this study, we prepared highly thermostable semi-transparent heaters composed of W layers with thicknesses of 1-20 nm, on which a 30 nm-thick ZnO layer was deposited to serve as an anti-oxidation barrier. The optical transmittance and sheet resistance of the heaters could be greatly modulated by varying the W layer thickness. For layer thicknesses up to 10 nm, the initial Joule heating above 100 oC significantly reduced the sheet resistance, by 300% for a 6 nm-thick W layer at a fixed voltage for a duration of 400 s. During the test period, heater current and heating capability continuously increased. In subsequent heater operations, the heaters exhibited highly reproducible heating capability. In contrast, for films thicker than 10 nm, the Joule heating process resulted in only a marginal reduction in sheet resistance, i.e., by 4% for a 20 nm-thick W layer. In order to investigate the sharp dependence of heater characteristics on thickness, we performed x-ray diffraction analyses, which revealed that the films thinner than 10 nm were composed of both the equilibrium low-resistivity α-phase and metastable high-resistivity β-phase, and films thicker than 10 nm contained mostly α-phase. The Joule heating process for the thinner films was found to transform the β-phase into α-phase at temperatures above 100 oC, which resulted in significant improvement in the heating capability of the 6 nm-thick W layer. For films thicker than 10 nm, the W layers contained mostly α-phase and no such transformation-induced effects were observed. Finally, W heaters composed of α-phase exhibited highly thermostable and reproducible heater properties, which make the heaters suitable for applications with semi-transparent heaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.