Session search is a complex search task that involves multiple search iterations triggered by query reformulations. We observe a Markov chain in session search: user's judgment of retrieved documents in the previous search iteration affects user's actions in the next iteration. We thus propose to model session search as a dual-agent stochastic game: the user agent and the search engine agent work together to jointly maximize their long term rewards. The framework, which we term "win-win search", is based on Partially Observable Markov Decision Process. We mathematically model dynamics in session search, including decision states, query changes, clicks, and rewards, as a cooperative game between the user and the search engine. The experiments on TREC 2012 and 2013 Session datasets show a statistically significant improvement over the state-of-the-art interactive search and session search algorithms.
Professional search activities such as patent and legal search are often time sensitive and consist of rich information needs with multiple aspects or subtopics. This paper proposes a 3D water filling model to describe this search process, and derives a new evaluation metric, the Cube Test, to encompass the complex nature of professional search. The new metric is compared against state-of-the-art patent search evaluation metrics as well as Web search evaluation metrics over two distinct patent datasets. The experimental results show that the Cube Test metric effectively captures the characteristics and requirements of professional search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.