In recent years, the development of nuclear grade FeCrAl-based alloys with enhanced accident tolerance has been carried out for light water reactor (LWR) fuel cladding to serve as a substitute for zirconium-based alloys. To achieve excellent microstructure stability and mechanical properties, the control of precipitation particles is critical for application of FeCrAl-based alloys. In this paper, the effect of thermomechanical processing on the microstructure and precipitation behavior of hot-rolled FeCrAl alloy plates was examined. After hot rolling, the FeCrAl alloy plates had typical deformation textures. The rolling direction (RD) orientation gradually rotated from <100> to <110> along with increasing reduction. Shear bands and cell structures were formed in the matrix, and the former acted as preferable nucleation sites for crystallization. Improved deformation helped to produce strain-induced precipitation. The plate with 83% reduction had the most homogeneous and finest precipitation particles. Identification results by TEM indicated that the Laves precipitation was of the Fe2Nb-type crystal structure type, with impurities including Mo, Cr, and Si. The plate with uniform Laves particles displayed favorable heat stability after a long period of aging at 800 °C. The microstructure evolution of the aged sample was also observed. The deformation microstructure and the strain-induced precipitation mechanism of FeCrAl alloys are discussed.
As leading candidates of sheet steels for advanced nuclear reactors, three types of Ni–Mo–Cr high-strength low alloy (HSLA) steels named as CNST1, CNST2 and CNSS3 were irradiated by 400 keV Fe+ with peak fluence to 1.4 × 1014, 3.5 × 1014 and 7.0 × 1014 ions/cm2, respectively. The distribution and morphology of the defects induced by the sample preparation method and Fe+ irradiation dose were investigated by transmission electron microscopy (TEM) and positron-annihilation spectroscopy (PAS). TEM samples were prepared with two methods, i.e., a focused ion beam (FIB) technique and the electroplating and twin-jet electropolishing (ETE) method. Point defects and dislocation loops were observed in CNST1, CNST2 and CNSS3 samples prepared via FIB. On the other hand, samples prepared via the ETE method revealed that a smaller number of defects was observed in CNST1, CNST2 and almost no defects were observed in CNST3. It is indicated that artifact defects could be introduced by FIB preparation. The PAS S-W plots showed that the existence of two types of defects after ion implantation included small-scale defects such as vacancies, vacancy clusters, dislocation loops and large-sized defects. The S parameter of irradiated steels showed a clear saturation in PAS response with increasing Fe+ dose. At the same irradiation dose, higher values of the S-parameter were achieved in CNST1 and CNST2 samples when compared to that in CNSS3 samples. The mechanism and evolution behavior of irradiation-induced defects were analyzed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.