Hypomyces perniciosus has been reported as a destructive pathogen of Agaricus bisporus. Previous research suggested that the pathogenesis may not only be perpetuated by H. perniciosus, but also by bacteria. Clarification of the interaction between A. bisporus and H. perniciosus is a prerequisite for the development of effective control measures against wet bubble disease. Here, the effects of H. perniciosus on A. bisporus mycelia are examined in dual culture on agar media and in open-ended test tubes. During disease development, the putative causal agents and cytology of wet bubble-diseased mushrooms were followed microscopically. The interaction between H. perniciosus and the basidiome of A. bisporus was also studied using dual-cultured H. perniciosus and basidiome tissues. Dual-cultured mycelia from both fungi showed that growth continued even after contact was made, without any observable antagonistic lines or cytoplasmic changes of A. bisporus mycelia. Hypomyces perniciosus could be isolated from diseased basidiomes any time after inoculation, but bacteria were only recovered after the basidiomes of A. bisporus had been killed by H. perniciosus. Dual culture of the basidiome tissue of A. bisporus and H. perniciosus on agar media established that H. perniciosus can independently and rapidly degrade the basidiomes of A. bisporus. We conclude that H. perniciosus has no pathogenic activity on the mycelial stage of A. bisporus, but it can destroy A. bisporus basidiomes in the absence of bacteria. Wet bubble disease is evidently not caused by bacteria, but by the fungus, although bacteria likely participate in the disease after invasion by the fungus.
Ganoderma lingzhi
is a well-known source of natural fungal medicines which has been given for the treatment of several diseases. China is one of the major commercial producers of Ganoderma mushroom worldwide. However, with the expansion of the commercial cultivation, the occurrence of the fungal diseases
on G. lingzhi h
as also been increased. The green mold disease symptoms were observed in the cultivation base of
G
.
lingzhi
in Zuojia Town, Jilin City, Jilin Province, China, causing the basidiomes to be rotten and withered, and the green mycelium layer generated gradually. The pathogenicity tests showed the same symptoms as appeared naturally in Zuojia mushroom base. Morphology characters revealed conidia green, ellipsoid, globose, 2.56–4.83 × 2.09–4.22 μm, length-width ratio was 1.1–1.2 (
n
= 10). Conidiophores trichoderma-like, often asymmetry, branches solitary, paired or in whorls of 3 phialides formed solitary, paired or in whorl, variable in shape, lageniform, sometimes ampulliform or subulate. While using molecular methodology, comparing with the sequences of
Trichoderma
hengshanicum
from GenBank, the analyzed sequence showed 97.32% homology with the RPB2 sequences, 100% with the TEF1-α sequences. A fungus isolated from the diseased tissues was identified based on morphology and molecular studies as
T. hengshanicum
. This is the first report of
T
.
hengshanicum
causing the green mold disease of
G
.
lingzhi
in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.