In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial (Bacteria and Archaea) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes.
Understanding the cues that drive larval fish settlement is critical for managing reef systems under stress. Reef sound is increasingly reported to influence fish recruitment, yet the physical and acoustic environment in which larval fish settle varies in space and time. Accordingly, testing potential settlement cues under different conditions is vital for understanding their ecological importance. We conducted 2 sets of field playback experiments in St. John, US Virgin Islands, one nearshore (10 m depth) and the second ‘offshore’ (25 m depth), to assess the effects of reef soundscape playback on settlement rates of multiple reef fish families. In each experiment, nightly currents were quantified and we replicated the diel soundscape cycle using high, low, and control (silent) amplitude recordings from nearby reefs. The first experiment revealed significant current-based, down-stream reduction in larval fish catches in subsurface light traps and a significant effect of increasing amplitude of reef playbacks on larval lizardfish (Synodontidae) catches. In the second, offshore experiment which had no current effect, increasing reef playback amplitude led to a significantly greater catch of parrotfish (Scaridae) larvae and decreased larval pelagic fish catch. Total reef fish larvae only showed attraction to reef playbacks at the most nearshore site. This work demonstrates that while sound can play a role in the settlement of certain reef fishes, responses are influenced by multiple factors, including larger-scale physical processes, underscoring the need to consider the scale of soundscape cues for reef fish settlement within an oceanographic context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.