Magnesium has important structural, catalytic and signaling roles in cells, yet few tools exist to image this metal ion in real time and at subcellular resolution. Here we report the first genetically encoded sensor for Mg2+, MagFRET-1. This sensor is based on the high-affinity Mg2+ binding domain of human centrin 3 (HsCen3), which undergoes a transition from a molten-globular apo form to a compactly-folded Mg2+-bound state. Fusion of Cerulean and Citrine fluorescent domains to the ends of HsCen3, yielded MagFRET-1, which combines a physiologically relevant Mg2+ affinity (K
d = 148 µM) with a 50% increase in emission ratio upon Mg2+ binding due to a change in FRET efficiency between Cerulean and Citrine. Mutations in the metal binding sites yielded MagFRET variants whose Mg2+ affinities were attenuated 2- to 100-fold relative to MagFRET-1, thus covering a broad range of Mg2+ concentrations. In situ experiments in HEK293 cells showed that MagFRET-1 can be targeted to the cytosol and the nucleus. Clear responses to changes in extracellular Mg2+ concentration were observed for MagFRET-1-expressing HEK293 cells when they were permeabilized with digitonin, whereas similar changes were not observed for intact cells. Although MagFRET-1 is also sensitive to Ca2+, this affinity is sufficiently attenuated (K
d of 10 µM) to make the sensor insensitive to known Ca2+ stimuli in HEK293 cells. While the potential and limitations of the MagFRET sensors for intracellular Mg2+ imaging need to be further established, we expect that these genetically encoded and ratiometric fluorescent Mg2+ sensors could prove very useful in understanding intracellular Mg2+ homeostasis and signaling.
Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics.
Introduction of a (Cys)(4) metal binding site at the dimerization interface of two fluorescent protein domains yields a chelating FRET sensor protein that shows a 2500-fold selectivity for Cd(2+) over Zn(2+) by taking advantage of their different ionic radii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.