Although the use of embryonic stem cells in the assisted repair of musculoskeletal tissues holds promise, a direct comparison of this cell source with adult marrow-derived stem cells has not been undertaken. Here we have compared the osteogenic differentiation potential of human embryonic stem cells (hESC) with human adult-derived stem cells in vivo. hESC lines H7, H9, the HEF-1 mesenchymal-like, telomerized H1 derivative, the human embryonic kidney epithelial cell line HEK293 (negative control), and adult human mesenchymal stem cells (hMSC) were either used untreated or treated with osteogenic factors for 4 days prior to injection into diffusion chambers and implantation into nude mice. After 11 weeks in vivo chambers were removed, frozen, and analyzed for evidence of bone, cartilage, and adipose tissue formation. All hESCs, when pretreated with osteogenic (OS) factors gave rise exclusively to bone in the chambers. In contrast, untreated hESCs (H9) formed both bone and cartilage in vivo. Untreated hMSCs did not give rise to bone, cartilage, or adipose tissue in vivo, while pretreatment with OS factors engendered both bone and adipose tissue. These data demonstrate that hESCs exposed to OS factors in vitro undergo directed differentiation toward the osteogenic lineage in vivo in a similar fashion to that produced by hMSCs. These findings support the potential future use of hESC-derived cells in regenerative medicine applications.
Introduction In the UK, 17,000 people die from injury each year, with uncontrolled bleeding the most significant cause of preventable mortality. Acute Traumatic Coagulopathy (ATC) exacerbates bleeding through the failure of blood-clotting with accelerated clot breakdown that mechanistically is driven by activated Protein C (aPC). No targeted therapy to treat the underlying cause of ATC exists with treatment limited to blood component resuscitation and antifibrinolytic drugs to prevent premature clot breakdown. Method Two hundred fifty-four bleeding trauma patients had Factor V and aPC measured on arrival and during resuscitation. A preclinical ATC model was used to test the novel therapeutic recombinant Factor V (rFV), which is resistant to aPC mediated cleavage. Mice underwent combined injury and pressure controlled-blood loss with intervention at 30-minutes to represent a clinically relevant model. Coagulopathy was measured by ROTEM and biomarkers of coagulation/fibrinolysis. Result Admission levels of FV were 38% lower (83 vs 134u/dL, p<0.0001), deteriorated during resuscitation to 65% of normal after transfusion of eight RBC units and were inversely related to aPC levels. Compared to vehicle, animals treated with rFV had reduced coagulopathy (Clot Strength at 5 minutes: 31 vs 24mm, p<0.01) and significantly improved survival (80% vs 44%, p≤ 0.001). Conclusion FV falls significantly during bleeding in trauma patients and in the murine model, rFV improved coagulation suggesting it may represent a potential therapeutic target for ATC. Take-home message Directly targeting the cause of ATC represents a novel therapeutic strategy in trauma and may improve survival after major haemorrhage by directly improving clot function.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.