We present a PDE-based approach for finding optimal paths for the Reeds–Shepp car. In our model we minimize a (data-driven) functional involving both curvature and length penalization, with several generalizations. Our approach encompasses the two- and three-dimensional variants of this model, state-dependent costs, and moreover, the possibility of removing the reverse gear of the vehicle. We prove both global and local controllability results of the models. Via eikonal equations on the manifold we compute distance maps w.r.t. highly anisotropic Finsler metrics, which approximate the singular (quasi)-distances underlying the model. This is achieved using a fast-marching (FM) method, building on Mirebeau (Numer Math 126(3):515–557, 2013 ; SIAM J Numer Anal 52(4):1573–1599, 2014 ). The FM method is based on specific discretization stencils which are adapted to the preferred directions of the Finsler metric and obey a generalized acuteness property. The shortest paths can be found with a gradient descent method on the distance map, which we formalize in a theorem. We justify the use of our approximating metrics by proving convergence results. Our curve optimization model in with data-driven cost allows to extract complex tubular structures from medical images, e.g., crossings, and incomplete data due to occlusions or low contrast. Our work extends the results of Sanguinetti et al. (Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications LNCS 9423, 2015 ) on numerical sub-Riemannian eikonal equations and the Reeds–Shepp car to 3D, with comparisons to exact solutions by Duits et al. (J Dyn Control Syst 22(4):771–805, 2016 ). Numerical experiments show the high potential of our method in two applications: vessel tracking in retinal images for the case and brain connectivity measures from diffusion-weighted MRI data for the case , extending the work of Bekkers et al. (SIAM J Imaging Sci 8(4):2740–2770, 2015 ). We demonstrate how the new model without reverse gear better handles bifurcations.
We consider hypo-elliptic diffusion and convection-diffusion on R 3 S 2 , the quotient of the Lie group of rigid body motions SE(3) in which group elements are equivalent if they are equal up to a rotation around the reference axis. We show that we can derive expressions for the convolution kernels in terms of eigenfunctions of the PDE, by extending the approach for the SE(2) case. This goes via application of the Fourier transform of the PDE in the spatial variables, yielding a second order differential operator. We show that the eigenfunctions of this operator can be expressed as (generalized) spheroidal wave functions. The same exact formulas are derived via the Fourier transform on SE(3). We solve both the evolution itself, as well as the time-integrated process that corresponds to the resolvent operator. Furthermore, we have extended a standard numerical procedure from SE(2) to SE(3) for the computation of the solution kernels that is directly related to the exact solutions. Finally, we provide a novel analytic approximation of the kernels that we briefly compare to the exact kernels.
We propose an efficient approach for the grouping of local orientations (points on vessels) via nilpotent approximations of sub-Riemannian distances in the 2D and 3D roto-translation groups SE(2) and SE(3). In our distance approximations we consider homogeneous norms on nilpotent groups that locally approximate SE(n), and which are obtained via the exponential and logarithmic map on SE(n). In a qualitative validation we show that the norms provide accurate approximations of the true sub-Riemannian distances, and we discuss their relations to the fundamental solution of the sub-Laplacian on SE(n). The quantitative experiments further confirm the accuracy of the approximations. Quantitative results are obtained by evaluating perceptual grouping performance of retinal blood vessels in 2D images and curves in challenging 3D synthetic volumes. The results show that (1) sub-Riemannian geometry is essential in achieving top performance and (2) grouping via the fast analytic approximations performs almost equally, or better, than data-adaptive fast marching approaches on R n and SE(n).
We provide a new, analytic kernel for scale space filtering of dMRI data. The kernel is an approximation for the Green's function of a hypo-elliptic diffusion on the 3D rigid body motion group SE(3), for fiber enhancement in dMRI. The enhancements are described by linear scale space PDEs in the coupled space of positions and orientations embedded in SE(3). As initial condition for the evolution we use either a Fiber Orientation Distribution (FOD) or an Orientation Density Function (ODF). Explicit formulas for the exact kernel do not exist. Although approximations well-suited for fast implementation have been proposed in literature, they lack important symmetries of the exact kernel. We introduce techniques to include these symmetries in approximations based on the logarithm on SE(3), resulting in an improved kernel. Regarding neuroimaging applications, we apply our enhancement kernel (a) to improve dMRI tractography results and (b) to quantify coherence of obtained streamline bundles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.