Abstract--A chemo-electro-mechanical formulation of quasi-static finite deformation of swelling incompressible porous media is derived from mixture theory. The model consists of an electrically charged porous solid saturated with a monovalent ionic solution. Incompressible and isothermal deformation is assumed. Hydration forces are neglected. The mixture as a whole is assumed locally electroneutral. Four phases following different kinematic paths are defined: solid, fluid, anions and cations. Balance laws are derived for each phase and for the mixture as a whole. A Lagrangian form of the second l~tw of thermodynamics is derived for incompressible porous media and is used to derive the constitutive relationships of the medium. It is shown that the theory is consistent with Biot's theory for the limiting case without ionic effects and with Staverman's results for the limiting case without deformation. ~) 1997 Elsevier Science Ltd.
For this study, we hypothesized that the depth-dependent compressive equilibrium properties of articular cartilage are the inherent consequence of its depth-dependent composition, and not the result of depth-dependent material properties. To test this hypothesis, our recently developed fibril-reinforced poroviscoelastic swelling model was expanded to include the influence of intra- and extra-fibrillar water content, and the influence of the solid fraction on the compressive properties of the tissue. With this model, the depth-dependent compressive equilibrium properties of articular cartilage were determined, and compared with experimental data from the literature. The typical depth-dependent behavior of articular cartilage was predicted by this model. The effective aggregate modulus was highly strain-dependent. It decreased with increasing strain for low strains, and increases with increasing strain for high strains. This effect was more pronounced with increasing distance from the articular surface. The main insight from this study is that the depth-dependent material behavior of articular cartilage can be obtained from its depth-dependent composition only. This eliminates the need for the assumption that the material properties of the different constituents themselves vary with depth. Such insights are important for understanding cartilage mechanical behavior, cartilage damage mechanisms and tissue engineering studies.
Since both the static and the time-dependent mechanical properties have now become fully dependent on tissue composition, the model allows assessing the mechanical consequences of compositional changes seen during osteoarthritis without further assumptions. This is a major step forward in quantitative evaluations of osteoarthritis progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.