We evaluated the short- and mid-term in vivo performance of the Innovamedica ventricular assist device (VAD), a new, low-cost, paracorporeal, pneumatically actuated, pulsatile blood pump. We implanted the VAD in six healthy sheep by inserting the stainless-steel inflow cannula into the left ventricular apex and suturing the outflow graft to the descending thoracic aorta. The anesthetized animals were supported for 6 hours, and pump performance, hemodynamic parameters, and hemolysis were monitored. The pump maintained a blood flow of 4.4 ± 0.8 L/min and an arterial blood pressure of 76 ± 15 mm Hg. At 6 hours, the plasma free hemoglobin concentration was 5.11 ± 0.6 mg/dl (baseline value, 4.52 ± 0.7 mg/dl). The VAD was easy to implant and deair and performed well during the 6 hour period. After successful short-term results, we similarly implanted the VAD in two healthy sheep for 30 days. The animals reached the scheduled end point without device-related problems. Postmortem examination of the explanted organs revealed small infarcted areas in the kidneys of one animal, but renal function was unaffected; the animal also had two thrombi (3 and 7 mm) on the outlet valve. This device may offer a simple, economical alternative to currently available VADs.
Over the last 8 years, we have developed and evaluated a continuous-flow total artificial heart (CFTAH) comprising two rotary blood pumps. To understand the physiologic effects of nonpulsatile circulation, we evaluated the CFTAH in 65 calves for 90 days or less. We describe our experience with 29 calves that survived for 7 days or more. The calves received dual axial-flow (n = 24) or centrifugal-flow (n = 5) pumps. Several iterations of customized atrial cuffs were developed to facilitate an adequate anatomical fit. Pressures (arterial pressure [AoP], pulmonary artery pressure [PAP], left atrial pressure [LAP], and right atrial pressure [RAP]) and pump parameters were continuously monitored. Hematologic and biochemistry values were analyzed. After each case, a necropsy was performed. The calves survived for 7-92 days (mean, 24 days). Pressures were 94 ± 14 (AoP), 25 ± 8 (PAP), 14 ± 6 (RAP), and 16 ± 6 (LAP) mm Hg. Pump flow was maintained at 9.1 ± 1.7 L/minute (right) and 9.4 ± 1.9 L/minute (left). Hematologic and biochemistry values remained acceptable. Eight animals underwent treadmill evaluations, in which oxygen consumption (VO2) was comparable with physiologic total-body VO2. In the two animals that survived to 90 days, the end-organs appeared unremarkable at autopsy, and the CFTAH circuits were free of thrombus. Our results show that a CFTAH can maintain a large animal physiologically and hemodynamically for up to 90 days with continuous flow.
In vivo testing of a three-dimensional aortic annuloplasty ring in a chronic calf model proved to be very successful and safe. Using the sizing and implant strategies developed, human trials seem indicated.
We evaluated the effects of steady state flow and perfusion on end-organ function in a long-term calf model. The animal received a continuous-flow total artificial heart (CFTAH) that we created from two axial-flow ventricular assist devices. Pump flow, blood pressure, and other pump parameters were monitored throughout the study, as were arterial blood gas and hematologic values, including neurohormone levels. Some hematologic values were mildly abnormal transiently after surgery but returned to acceptable levels within the first week. During the 90-day study, the calf showed no signs of hemolysis or thrombosis. Its mental function remained normal, as evidenced by the animal's interest in its surroundings and response to stimuli. End-organ and vasomotor function was not adversely affected by 90 days of steady state flow. This was the first study in which CFTAH support of an animal model was maintained for this duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.