No abstract
Abstract. We introduce a modified Kalman filter that performs robust, real-time outlier detection, without the need for manual parameter tuning by the user. Systems that rely on high quality sensory data (for instance, robotic systems) can be sensitive to data containing outliers. The standard Kalman filter is not robust to outliers, and other variations of the Kalman filter have been proposed to overcome this issue. However, these methods may require manual parameter tuning, use of heuristics or complicated parameter estimation procedures. Our Kalman filter uses a weighted least squares-like approach by introducing weights for each data sample. A data sample with a smaller weight has a weaker contribution when estimating the current time step's state. Using an incremental variational Expectation-Maximization framework, we learn the weights and system dynamics. We evaluate our Kalman filter algorithm on data from a robotic dog.
Abstract-For robots of increasing complexity such as humanoid robots, conventional identification of rigid body dynamics models based on CAD data and actuator models becomes difficult and inaccurate due to the large number of additional nonlinear effects in these systems, e.g., stemming from stiff wires, hydraulic hoses, protective shells, skin, etc. Data driven parameter estimation offers an alternative model identification method, but it is often burdened by various other problems, such as significant noise in all measured or inferred variables of the robot. The danger of physically inconsistent results also exists due to unmodeled nonlinearities or insufficiently rich data. In this paper, we address all these problems by developing a Bayesian parameter identification method that can automatically detect noise in both input and output data for the regression algorithm that performs system identification. A post-processing step ensures physically consistent rigid body parameters by nonlinearly projecting the result of the Bayesian estimation onto constraints given by positive definite inertia matrices and the parallel axis theorem. We demonstrate on synthetic and actual robot data that our technique performs parameter identification with 5 to 20% higher accuracy than traditional methods. Due to the resulting physically consistent parameters, our algorithm enables us to apply advanced control methods that algebraically require physical consistency on robotic platforms.
Tracking and identifying players in sports videos filmed with a single pan-tilt-zoom camera has many applications, but it is also a challenging problem. This paper introduces a system that tackles this difficult task. The system possesses the ability to detect and track multiple players, estimates the homography between video frames and the court, and identifies the players. The identification system combines three weak visual cues, and exploits both temporal and mutual exclusion constraints in a Conditional Random Field (CRF). In addition, we propose a novel Linear Programming (LP) Relaxation algorithm for predicting the best player identification in a video clip. In order to reduce the number of labeled training data required to learn the identification system, we make use of weakly supervised learning with the assistance of play-by-play texts. Experiments show promising results in tracking, homography estimation, and identification. Moreover, weakly supervised learning with play-by-play texts greatly reduces the number of labeled training examples required. The identification system can achieve similar accuracies by using merely 200 labels in weakly supervised learning, while a strongly supervised approach needs a least 20,000 labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.