Although tissue injury and inflammation are considered essential for the induction of angiogenesis, the molecular controls of this cascade are mostly unknown. Here we show that a macrophage-derived peptide, PR39, inhibited the ubiquitin-proteasome-dependent degradation of hypoxia-inducible factor-1alpha protein, resulting in accelerated formation of vascular structures in vitro and increased myocardial vasculature in mice. For the latter, coronary flow studies demonstrated that PR39-induced angiogenesis resulted in the production of functional blood vessels. These findings show that PR39 and related compounds can be used as potent inductors of angiogenesis, and that selective inhibition of hypoxia-inducible factor-1alpha degradation may underlie the mechanism of inflammation-induced angiogenesis.
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction of MnSOD mRNA was inhibited by pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI), and 4-(2-aminoethyl)-benzenesulfonyl fluoride, but not with the nitric oxide synthase inhibitor L-NAME (N-monomethyl-L-arginine) or the xanthine oxidase inhibitor allopurinol. VEGF stimulation of MnSOD was also inhibited by adenoviral-mediated overexpression of catalase Cu, Zn-SOD and a dominant-negative form of the small GTPase component of NADPH oxidase Rac1 (Rac1N17). Treatment of HCAEC with VEGF resulted in a transient increase in ROS production at 20 min, as measured by 2,7-dichlorodihydrofluorescein oxidation. This effect was abrogated by expression of Rac1N17. Taken together, these findings suggest that VEGF induces MnSOD by an NADPH oxidase-dependent mechanism and that VEGF signaling in the endothelium is coupled to the redox state of the cell.
The role of protein kinase C (PKC) in the human aryl hydrocarbon receptor (hAhR) signal transduction pathway was examined in cell lines stably transfected with pGUDLUC6.1, in which luc ϩ is solely controlled by four dioxin-responsive elements (DREs). These cell lines, P5A11 and HG40/6, were derived from HeLa and HepG2 cells respectively. Simultaneous treatment of these cells with 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) and phorbol-12-myristate-13-acetate (PMA) enhanced transactivation of the reporter construct several-fold relative to cells treated with TCDD alone. PKC inhibitors block the PMA effect and hAhR-mediated signal transduction, demonstrating these processes require PKC activity. Examination of other independently generated, HeLa-derived cell lines stably transfected with pGUDLUC6.1 demonstrates the PMA effect in P5A11 cells is not a clonal artifact. Transient transfections indicate the PMA effect is not due to a luciferase message/gene product stabilization mechanism or stimulation of the basal transcription machinery. Examination of cytosolic preparations demonstrates PKC stimulation or inhibition does not alter hAhR and hAhR nuclear translocator protein levels or TCDD-induced downregulation of hAhR levels. Similarly, examination of nuclear extracts indicated PKC stimulation or inhibition does not alter nuclear AhR levels or hAhR/hAhR nuclear translocator protein heterodimer DRE-binding activity as assessed by electrophoretic mobility shift assay. These results demonstrate a PKCmediated event is required for the hAhR to form a functional transcriptional complex that leads to trans-activation and that the DRE is the minimal DNA element required for PMA to enhance AhR-mediated trans-activation.
An important limitation of standard transgenic assays is that multiple copies of the transgene are inserted randomly into the mouse genome, resulting in line-to-line variation in expression. One way to control for these variables is to target a single copy of the transgene to a defined locus of the mouse genome by homologous recombination. In the present study, we have used such an approach to target the promoters of 2 different genes, namely von Willebrand factor (VWF) and Flt-1, to the hypoxanthine phosphoribosyltransferase (Hprt) gene locus. Consistent with previous findings in standard transgenic animals, we report that the VWF promoter contains information for expression in a subset of endothelial cells in the heart, skeletal muscle, and brain. In contrast, the Flt-1 promoter directs expression in all vascular beds except for the liver. The Flt-1 transgene was active in the endothelium of tumor xenografts, whereas the VWF promoter was not. Under in vitro conditions, conditioned medium from tumor cells resulted in a significant upregulation of Flt-1 mRNA and promoter activity, but no change in VWF levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.