A suite of 37 molecular dynamics simulations is conducted at two system sizes to systematically characterize the role of grain boundary (GB) misorientation on spall strength in pure BCC tantalum (Ta). The systems studied consist of bicrystals with a single [110] symmetric tilt grain boundary. Two loading conditions are compared: (i) homogeneous extension under uniaxial strain simulated in this study and (ii) piston/flyer impact of sample, which induces heterogeneous deformation via shockwave propagation along the length of the sample. The piston/flyer impact is taken from the literature and run on the same set of GB misorientation angles using LAMMPS. The major finding here is that both methods result in similar spall strength predictions, but the homogeneous extension method generally requires two to three orders of magnitude fewer atoms and similar reductions in computational costs. Spall strength results systematically overpredict using this method, by about 10% for the dataset three orders of magnitude smaller than piston/flyer simulations, and 5% for the dataset two orders of magnitude smaller. Lastly, the effect of system size and pre-compression magnitude on spall strength is systematically characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.