SUMMARYAntioxidants are known to play an important role in quenching reactive oxygen species (ROS), thus ameliorating oxidative stress. Since increased metabolism associated with exercise can increase oxidative stress, dietary antioxidants may be a limiting factor in determining aspects of physical performance. Here we tested whether oxidative stress associated with flight exercise of captive adult budgerigars, Melopsittacus undulatus differed after they received a diet containing either enhanced (EQ) or reduced levels (RQ) of a nutritional supplement (Nutrivit ® ) rich in antioxidants for 4 weeks. We also assessed differences in take-off escape time, a potential fitness-determining physiological capability. Oxidative stress was measured in two ways: comet assay to measure DNA damage; and analysis of malondialdehyde (MDA), a by-product of lipid peroxidation. Flight exercise appeared to increase oxidative stress. Moreover, birds had a higher percentage of intact DNA (fewer alkali labile sites) in one comet measure and lower levels of MDA after an EQ diet than after an RQ diet. We found no difference in flight performance between the two diets. Our results suggested that birds exerted maximum effort in escape flights, regardless of diet. However, this was at a cost of increased oxidative stress post-flight when on a reduced quality diet, but not when on an enhanced, antioxidant-rich diet. We suggest that dietary antioxidants may prove important in reducing exercise-related costs through multiple physiological pathways. Further work is necessary to fully understand the effects of antioxidants and oxidative stress on exercise performance in the longer term.
SUMMARYWhere behavioural responses differ consistently between individuals, this is termed 'personality'. There is the suggestion, but with little supporting data, that personality traits reflect underlying variation in physiology. Here, we tested whether greenfinches Carduelis chloris differing in personality traits differed in various plasma indices of oxidative profile: antioxidant capacity (OXY), pro-oxidant status (reactive oxygen metabolites, ROMs), oxidative stress (OS) and an end-product of oxidative damage: malondialdehyde (MDA). We measured two personality traits: neophobia (latency to approach food near novel objects) and object exploration (latency to approach novel objects). These traits were uncorrelated. ROMs, OXY, OS and MDA were also uncorrelated with each other. Highly neophobic birds had lower OXY, higher ROMs and higher OS than less neophobic birds. Fast exploring birds had higher OXY than slow explorers, but did not differ in ROMs or OS. Variation in MDA was described by a quadratic relationship with neophobia: birds with extremely high or low neophobia had lower MDA than birds with intermediate neophobia, despite highly neophobic birds exhibiting lower OS than intermediately neophobic birds. Additively in that model, fast explorers had lower MDA than slower explorers. To conclude: first, personality types can differ in oxidative profile. Second, although physiological differences (e.g. hormonal stress responsiveness) between personality types generally range along a linear continuum, physiological costs may not. Finally, relationships with oxidative profile differed between neophobia and object exploration. Understanding how oxidative profile and thus physiological costs vary within and between personality traits may explain how differences in personality traits can predict fitness.
Captive breeding programmes are common for many parrot species. We show that in small parrots kept in standard cages with ad libitum food, high weight gain was prevalent and linked with a risk of DNA damage. Such damage could explain the poor health, fertility and survival of many captive parrots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.