The success of the cutaneous immune system reflects its ability to rapidly and efficiently recruit leukocytes to areas of trauma and infection. Skin-homing memory T cells expressing cutaneous lymphocyte-associated Ag tether on the walls of postcapillary venules in inflamed skin via interaction with endothelial E-selectin and roll in response to the shear stress imparted by flowing blood. Rolling cells sample the vascular surface for chemoattractant compounds (e.g., thymus- and activation-regulated chemokine/CCL17 interacting with CCR4 on the leukocyte surface) and, if successfully stimulated, progress to firm arrest and transmigration mediated by LFA-1 and vascular ICAM-1. Although it is established that this sequence of events draws T cells into inflamed skin, the mechanisms directing trafficking of T cells to noninflamed skin are less well characterized. We hypothesized that basal expression and colocalization of E-selectin, chemokine (e.g., CCL17), and ICAM-1 in dermal vessels could serve to recruit T cells to noninflamed human skin. Immunohistochemical staining for E-selectin and CD31 demonstrated E-selectin expression in a restricted subset of dermal vessels in noninflamed human skin from three different sites. Confocal multicolor immunofluorescence imaging revealed a nonuniform distribution of E-selectin in dermal vessels as well as colocalization of E-selectin with CCL17 and ICAM-1. Coexpression of these molecules on blood vessels in noninflamed skin provides the basis for a model of cutaneous immunosurveillance system active in the absence of pathologic inflammation.
Hair follicle (HF) growth and regression is an exquisitely regulated process of cell proliferation followed by massive cell death and is accompanied by cyclical expression of the apoptosis regulatory gene pair, Bcl-2 and Bax. To further investigate the role of Bcl-2 expression in the control of hair growth and keratinocyte apoptosis, we have used transgenic mice that overexpress human Bcl-2 in basal epidermis and in the outer root sheath under the control of the human keratin-14 promoter (K14/Bcl-2). When irradiated with ultraviolet B (UVB) light, K14/Bcl-2 mice developed about 5-10-fold fewer sunburn cells (ie, apoptotic keratinocytes) in the basal layer of the epidermis, compared to wild-type mice, whereas cultures of primary keratinocytes from transgenic mice were completely resistant to UVB-induced histone formation, at doses that readily induced histone release from wild-type cells. K14/Bcl-2 mice show no alteration of neonatal hair follicle morphogenesis or of the onset of the first wave of HF regression (catagen). However, compared to wild-type controls, K14/Bcl-2 mice subsequently displayed a significant acceleration of spontaneous catagen progression. During chemotherapy-induced alopecia, follicular dystrophy was promoted in K14/Bcl-2 mice. Thus, although K14-driven overexpression of Bcl-2 protected murine epidermal keratinocytes from UVB-induced apoptosis, it surprisingly promoted catagen- and chemotherapy-associated keratinocyte apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.